I'm trying to create a spiral structure, like spiral arms of a galaxy, in a 2D array in Python. The first and easy way I did it, was using a simple log-spiral function, defined as in the image:log spiral function
The x
and y
values are created by
x,y=meshgrid(arange(0,M=400,1), arange(0,N=400,1))
M
and N
are the dimensions of the array. The radius coordinate is simple, like the equation of the last image,
r=(abs(x-gal_center[1])**(2.0)+((abs(y-gal_center[0]))/(q))**(2.0))**(0.5)
Creating the profile brightness of f(r), and ploting
plt.imshow((abs(galaxy_model))**0.2)
give me a commom spiral structure, like a spiral galaxy.
Another way to do this, is to use another function, the hyperbolic tangent.
In the equations of the last image, unless r
, that is defined like before, all the others parameters, are ajustable numbers.
For this function, I have problems to make a spiral structure in a 2D array. I don't know, if I need to use the hyperbolic tangent to make a coordinate transformation in the array, or a matrix/array distortion, to create a spiral structure. I tried it, but I could not.
How can I proced to make this spira/image, using the definitions above? Thanks for the help!
More information about the subject, in the references:
Edited:
The code that I'm using is as follows:
from __future__ import division
import numpy as np
from numpy import*
import matplotlib.pyplot as pyplot
import scipy as sp
from scipy import*
import pylab as pl
from pylab import*
import math
from math import*
import pyfits as pf
from pyfits import*
def exponential_profile(Io,ro,r):
Iexp=0.5*Io*np.exp(-r/ro)
return Iexp
def sersic_profile(Io,ro,r,n):
Iser=Io*np.exp(-(r/ro)**(1/n))
return Iser
def galaxy_model1(q,c,gal_center,Io,ro,n,M,N,xi,p,n1,n2,s1,s2,k):
x,y=meshgrid(arange(-M/2,M/2,1), arange(-N/2,N/2,1))
r=(abs(x-0*gal_center[1])**(c+2.0)+((abs(y-0*gal_center[0]))/(q))**(c+2.0))**(1.0/(c+2.0))
power=2.0
fr=(30-xi*np.log(1.0+r**power)+(1.0/p)*np.cos(n1*arctan2(x,y)+k*np.log(s1+r**power))+(1.0/p)*np.cos(n2*arctan2(x,y)+k*np.log(s2+r**power)) )
I_exp=exponential_profile(Io,ro,r)
I_ser=sersic_profile(Io,ro,r,n)
galaxy_model_1=0.1*I_exp+0.1*I_ser+0.5*fr
return galaxy_model_1
def galaxy_model2(q,c,Cb,rout,rin,Oout,a,M,N,Io,ro,n):
gal_center=(M/2,N/2)
x,y=meshgrid(arange(0,M,1), arange(0,N,1))
r=(abs(x-0*gal_center[1])**(c+2.0)+((abs(y-0*gal_center[0]))/(q))**(c+2.0))**(1.0/(c+2.0))
A=2*Cb/(abs(Oout)+Cb)-1.00001
B=(2-np.arctanh(A))*((rout)/(rout-rin))
T=0.5*(np.tanh(B*(r/rout-1)+2)+1)
Or=Oout*T*(0.5*(r/rout+1))**a
I_exp=exponential_profile(Io,ro,r)
I_ser=sersic_profile(Io,ro,r,n)
galaxy_model_2=0.1*I_exp+0.1*I_ser+0.5*Or
return galaxy_model_2
galaxy_model_1=galaxy_model1(q,c,(M/2,N/2),Io,ro,n,M,N,xi,p,n1,n2,s1,s2,k)
galaxy_model_2=galaxy_model2(q,c,Cb,rout,rin,Oout,a,M,N,Io,ro,n)
fig=plt.figure()
ax1=fig.add_subplot(121)
ax1.imshow((abs(galaxy_model_1))**0.2)
pf.writeto('gal_1.fits', galaxy_model_1, clobber=1)
ax2=fig.add_subplot(122, axisbg='white')
ax2.imshow((abs(galaxy_model_2))**0.2)
plt.show()
A set of parameters can be:
M=400
N=400
q=0.8
c=0.0
Io=100.0
ro=10.0
n=3.0
xi=2.0
p=1.7
n1=3.0
n2=3.0
s1=0.05
s2=0.5
k=3.0
Cb=0.23
rout=100.0
rin=10.0
Oout=pi/2
a=0.0
I'm not sure this is exactly right but I think it is close, and produces results similar to the paper:
def galaxy_model2(q,c,Cb,rout,rin,Oout,a,M,N,Io,ro,n):
gal_center=(0,0)
x,y=meshgrid(arange(-M/2,M/2,1), arange(-N/2,N/2,1))
r=(abs(x-gal_center[1])**(c+2.0)+((abs(y-gal_center[0]))/(q))**(c+2.0))**(1.0/(c+2.0))
A=2*Cb/(abs(Oout)+Cb)-1.00001
B=(2-np.arctanh(A))*((rout)/(rout-rin))
T=0.5*(np.tanh(B*(r/rout-1)+2)+1)
Or=Oout*T*(0.5*(r/rout+1))**a
Or=30-np.log(1.0+r**2.0)+(2.0/p)*np.cos(n2*arctan2(x,y)+k*Or)
I_exp=exponential_profile(Io,ro,r)
I_ser=sersic_profile(Io,ro,r,n)
#galaxy_model_2=0.5*Or
return Or
The only change is that I use
Or=30-np.log(1.0+r**2.0)+(2.0/p)*np.cos(n2*arctan2(x,y)+k*Or)
to create a galaxy plot.
np.cos(n1*arctan2(x,y))
creates this plot:
And i spin it around by adding k*Or
Using this with n2=3 I get: