I'm writing a program to find an Elliptic Fourier Coefficients (EFC) of a closed planar curve, and have a trouble with coefficients normalization.
The closed planar polyline p is described by the set of points m_points: m_points[i][0] keeps xi-coordinates, m_pointsi keeps yi-coordinates. I start form 0 to m_num_points-1.
The EFC of the polyline is calculated by that algorithm (coefficients are in EFD array).
// calc accumulated curve length, delta x, and delta y
dt[0] := 0;
dx[0] := 0;
dy[0] := 0;
tp[0] := 0;
T := 0;
for i:=1 to p.m_num_points-1 do begin
va := VectorAffineSubtract(p.m_points[i], p.m_points[i-1]);
dt[i] := VectorLength( va );
dx[i] := p.m_points[i][0] - p.m_points[i-1][0];
dy[i] := p.m_points[i][1] - p.m_points[i-1][1];
tp[i] := tp[i-1] + dt[i];
T := tp[i];
end;
Tpi := T / (2*PI*PI);
piT := PI*2 / T;
// find elliptic fourier coefficients
// first
An := 0;
Cn := 0;
for i:=0 to p.m_num_points-1 do begin
An := An + (p.m_points[i][0] + p.m_points[i-1][0]) * dt[i] / 2;
Cn := Cn + (p.m_points[i][1] + p.m_points[i-1][1]) * dt[i] / 2;
end;
EFD[0][0] := An / T;
EFD[0][1] := 0;
EFD[0][2] := Cn / T;
EFD[0][3] := 0;
// next
for n:=1 to m_num_efd do begin
Tn := Tpi / (n*n);
piTn := piT * n;
An := 0;
Bn := 0;
Cn := 0;
Dn := 0;
for i:=1 to p.m_num_points-1 do begin
An := An + dx[i]/dt[i]*( cos(piTn*tp[i]) - cos(piTn*tp[i-1]) );
Bn := Bn + dx[i]/dt[i]*( sin(piTn*tp[i]) - sin(piTn*tp[i-1]) );
Cn := Cn + dy[i]/dt[i]*( cos(piTn*tp[i]) - cos(piTn*tp[i-1]) );
Dn := Dn + dy[i]/dt[i]*( sin(piTn*tp[i]) - sin(piTn*tp[i-1]) );
end;
EFD[n][0] := An * Tn;
EFD[n][1] := Bn * Tn;
EFD[n][2] := Cn * Tn;
EFD[n][3] := Dn * Tn;
end;
To restore polyline from the set of harmonics I use that algorithm.
// restore outline
resP := TYPolyline.create();
for i:=0 to p.m_num_points-1 do begin
xn := EFD[0][0];
yn := EFD[0][2];
for n:=1 to m_num_efd do begin
xn := xn + EFD[n][0] * cos(piT*n*tp[i]) + EFD[n][1] * sin(piT*n*tp[i]);
yn := yn + EFD[n][2] * cos(piT*n*tp[i]) + EFD[n][3] * sin(piT*n*tp[i]);
end;
resP.add_point( xn, yn );
end;
Now I need to normalize EFD and place them in a new array NEFD. I do the so:
// Normalize EFD
An := EFD[0][0];
Bn := EFD[0][1];
Cn := EFD[0][2];
Dn := EFD[0][3];
for n:=0 to m_num_efd do begin
NEFD[n][0] := EFD[n][0];
NEFD[n][1] := EFD[n][1];
NEFD[n][2] := EFD[n][2];
NEFD[n][3] := EFD[n][3];
end;
// rotate starting point
angl_o := 0.5 * ArcTan2( 2*(An*Bn + Cn*Dn), An*An + Cn*Cn - Bn*Bn - Dn*Dn );
for n:=1 to m_num_efd+1 do begin
NEFD[n-1][0]:= EFD[n-1][0]*cos((n)*angl_o) + EFD[n-1][1]*sin((n)*angl_o);
NEFD[n-1][1]:=-EFD[n-1][0]*sin((n)*angl_o) + EFD[n-1][1]*cos((n)*angl_o);
NEFD[n-1][2]:= EFD[n-1][2]*cos((n)*angl_o) + EFD[n-1][3]*sin((n)*angl_o);
NEFD[n-1][3]:=-EFD[n-1][3]*sin((n)*angl_o) + EFD[n-1][3]*cos((n)*angl_o);
end;
// make the semi-major axis parallel to the x-axis
angl_w := ArcTan( NEFD[1][2] / NEFD[1][0] );
cs := cos(angl_w);
ss := sin(angl_w);
for n:=1 to m_num_efd do begin
NEFD[n][0] := cs*NEFD[n][0] + ss*NEFD[n][2];
NEFD[n][1] := cs*NEFD[n][1] + ss*NEFD[n][3];
NEFD[n][2] :=-ss*NEFD[n][0] + cs*NEFD[n][2];
NEFD[n][3] :=-ss*NEFD[n][1] + cs*NEFD[n][3];
end;
// size invariant
R := sqrt( NEFD[1][0]*NEFD[1][0] );
for n:=0 to m_num_efd do begin
NEFD[n][0] := NEFD[n][0] / R;
NEFD[n][1] := NEFD[n][1] / R;
NEFD[n][2] := NEFD[n][2] / R;
NEFD[n][3] := NEFD[n][3] / R;
end;
When I try to make semi-major axes parallel to X and rotate coefficeints, I get an ugly result. It looks like the restored shape is rotated around z-axis. (Source shape on the left, restored on the right.)
What is wrong with my code?
UPDATE
After the successful answer of @MBo the following modifications of code are necessary:
// MODIFIED: change n-1 to n
// rotate starting point
angl_o := 0.5 * ArcTan2( 2*(An*Bn + Cn*Dn), An*An + Cn*Cn - Bn*Bn - Dn*Dn );
for n:=1 to m_num_efd+1 do begin
NEFD[n][0]:= EFD[n][0]*cos((n)*angl_o) + EFD[n][1]*sin((n)*angl_o);
NEFD[n][1]:=-EFD[n][0]*sin((n)*angl_o) + EFD[n][1]*cos((n)*angl_o);
NEFD[n][2]:= EFD[n][2]*cos((n)*angl_o) + EFD[n][3]*sin((n)*angl_o);
NEFD[n][3]:=-EFD[n][3]*sin((n)*angl_o) + EFD[n][3]*cos((n)*angl_o);
end;
// MODIFIED: change left NEFD to EFD
// make the semi-major axis parallel to the x-axis
angl_w := ArcTan( NEFD[1][2] / NEFD[1][0] );
cs := cos(angl_w);
ss := sin(angl_w);
for n:=1 to m_num_efd do begin
EFD[n][0] := cs*NEFD[n][0] + ss*NEFD[n][2];
EFD[n][1] := cs*NEFD[n][1] + ss*NEFD[n][3];
EFD[n][2] :=-ss*NEFD[n][0] + cs*NEFD[n][2];
EFD[n][3] :=-ss*NEFD[n][1] + cs*NEFD[n][3];
end;
// ADDED: place normalized EFD into NEFD
for n:=0 to m_num_efd do begin
NEFD[n][0] := EFD[n][0];
NEFD[n][1] := EFD[n][1];
NEFD[n][2] := EFD[n][2];
NEFD[n][3] := EFD[n][3];
end;
Possible reason:
In this cycle you use modified value of NEFD[n][0]
to calculate new value of NEFD[n][2]
(the same for NEFD[n][1]
). It seems you have to store and use unmodified values.
for n:=1 to m_num_efd do begin
NEFD[n][0] := cs*NEFD[n][0] + ss*NEFD[n][2];
NEFD[n][1] := cs*NEFD[n][1] + ss*NEFD[n][3];
vvvvvvvvv
NEFD[n][2] :=-ss*NEFD[n][0] + cs*NEFD[n][2];
vvvvvvvvv
NEFD[n][3] :=-ss*NEFD[n][1] + cs*NEFD[n][3];
end;