scalascopedynamic-programmingmemoizationforward-reference

Is there a generic way to memoize in Scala?


I wanted to memoize this:

def fib(n: Int) = if(n <= 1) 1 else fib(n-1) + fib(n-2)
println(fib(100)) // times out

So I wrote this and this surprisingly compiles and works (I am surprised because fib references itself in its declaration):

case class Memo[A,B](f: A => B) extends (A => B) {
  private val cache = mutable.Map.empty[A, B]
  def apply(x: A) = cache getOrElseUpdate (x, f(x))
}

val fib: Memo[Int, BigInt] = Memo {
  case 0 => 0
  case 1 => 1
  case n => fib(n-1) + fib(n-2) 
}

println(fib(100))     // prints 100th fibonacci number instantly

But when I try to declare fib inside of a def, I get a compiler error:

def foo(n: Int) = {
  val fib: Memo[Int, BigInt] = Memo {
    case 0 => 0
    case 1 => 1
    case n => fib(n-1) + fib(n-2) 
  }
  fib(n)
} 

Above fails to compile error: forward reference extends over definition of value fib case n => fib(n-1) + fib(n-2)

Why does declaring the val fib inside a def fails but outside in the class/object scope works?

To clarify, why I might want to declare the recursive memoized function in the def scope - here is my solution to the subset sum problem:

/**
   * Subset sum algorithm - can we achieve sum t using elements from s?
   *
   * @param s set of integers
   * @param t target
   * @return true iff there exists a subset of s that sums to t
   */
  def subsetSum(s: Seq[Int], t: Int): Boolean = {
    val max = s.scanLeft(0)((sum, i) => (sum + i) max sum)  //max(i) =  largest sum achievable from first i elements
    val min = s.scanLeft(0)((sum, i) => (sum + i) min sum)  //min(i) = smallest sum achievable from first i elements

    val dp: Memo[(Int, Int), Boolean] = Memo {         // dp(i,x) = can we achieve x using the first i elements?
      case (_, 0) => true        // 0 can always be achieved using empty set
      case (0, _) => false       // if empty set, non-zero cannot be achieved
      case (i, x) if min(i) <= x && x <= max(i) => dp(i-1, x - s(i-1)) || dp(i-1, x)  // try with/without s(i-1)
      case _ => false            // outside range otherwise
    }

    dp(s.length, t)
  }

Solution

  • I found a better way to memoize using Scala:

    def memoize[I, O](f: I => O): I => O = new mutable.HashMap[I, O]() {
      override def apply(key: I) = getOrElseUpdate(key, f(key))
    }
    

    Now you can write fibonacci as follows:

    lazy val fib: Int => BigInt = memoize {
      case 0 => 0
      case 1 => 1
      case n => fib(n-1) + fib(n-2)
    }
    

    Here's one with multiple arguments (the choose function):

    lazy val c: ((Int, Int)) => BigInt = memoize {
      case (_, 0) => 1
      case (n, r) if r > n/2 => c(n, n - r)
      case (n, r) => c(n - 1, r - 1) + c(n - 1, r)
    }
    

    And here's the subset sum problem:

    // is there a subset of s which has sum = t
    def isSubsetSumAchievable(s: Vector[Int], t: Int) = {
      // f is (i, j) => Boolean i.e. can the first i elements of s add up to j
      lazy val f: ((Int, Int)) => Boolean = memoize {
        case (_, 0) => true        // 0 can always be achieved using empty list
        case (0, _) => false       // we can never achieve non-zero if we have empty list
        case (i, j) => 
          val k = i - 1            // try the kth element
          f(k, j - s(k)) || f(k, j)
      }
      f(s.length, t)
    }
    

    EDIT: As discussed below, here is a thread-safe version

    def memoize[I, O](f: I => O): I => O = new mutable.HashMap[I, O]() {self =>
      override def apply(key: I) = self.synchronized(getOrElseUpdate(key, f(key)))
    }