pythonpandasscikit-learnpolynomialsnon-linear-regression

How to make a polynomial regression with sklearn


I have some data that doesn't fit a linear regression:

enter image description here

In fact should fit a quadratic function 'exactly':

P = R*I**2 

I'm making this:

model = sklearn.linear_model.LinearRegression()

X = alambres[alambre]['mediciones'][x].reshape(-1, 1)
Y = alambres[alambre]['mediciones'][y].reshape(-1, 1)
model.fit(X,Y)

Is there any chance to solve it by doing something like:

model.fit([X,X**2],Y)

Solution

  • You can use numpy's polyfit.

    import numpy as np
    from matplotlib import pyplot as plt
    X = np.linspace(0, 100, 50)
    Y = 23.24 + 2.2*X + 0.24*(X**2) + 10*np.random.randn(50) #added some noise
    coefs = np.polyfit(X, Y, 2)
    print(coefs)
    p = np.poly1d(coefs)
    plt.plot(X, Y, "bo", markersize= 2)
    plt.plot(X, p(X), "r-") #p(X) evaluates the polynomial at X
    plt.show()
    

    Out:

    [  0.24052058   2.1426103   25.59437789]
    

    enter image description here