python-3.xpandasgroup-byconcatenationpivot-table

Pandas pivot table Percent Calculations


Given the following data frame and pivot table:

import pandas as pd
df=pd.DataFrame({'A':['x','y','z','x','y','z'],
                 'B':['one','one','one','two','two','two'],
                 'C':[2,18,2,8,2,18]})
df

    A   B       C
0   x   one     2
1   y   one     18
2   z   one     2
3   x   two     8
4   y   two     2
5   z   two     18

table = pd.pivot_table(df, index=['A', 'B'],aggfunc=np.sum)

            C
A   B   
x   one     2
    two     8
y   one     18
    two     2
z   one     2
    two     18

I'd like to add 2 columns to this pivot table; one showing the percent of all values and another for percent within column A like this:

           C    % of Total  % of B
A   B
x   one    2    4%          20%
    two    8    16%         80%
y   one   18    36%         90%
    two    2    4%          10%
z   one    2    4%          10%
    two   18    36%         90%

Extra Credit:

I'd like a bottom summary row which has the sum of column C (it's okay if it also has 100% for the next 2 columns, but nothing is needed for those).


Solution

  • You can use:

    table['% of Total'] = (table.C / table.C.sum() * 100).astype(str) + '%'
    table['% of B'] = (table.C / table.groupby(level=0).C.transform(sum) * 100).astype(str) + '%'
    print table
            C % of Total % of B
    A B                        
    x one   2       4.0%  20.0%
      two   8      16.0%  80.0%
    y one  18      36.0%  90.0%
      two   2       4.0%  10.0%
    z one   2       4.0%  10.0%
      two  18      36.0%  90.0%
    

    But with real data I think casting to int is not recommended, better is use round.

    Extra Credit:

    table['% of Total'] = (table.C / table.C.sum() * 100)
    table['% of B'] = (table.C / table.groupby(level=0).C.transform(sum) * 100)
    table.loc['total', :] = table.sum().values
    print table
                  C  % of Total  % of B
    A     B                            
    x     one   2.0         4.0    20.0
          two   8.0        16.0    80.0
    y     one  18.0        36.0    90.0
          two   2.0         4.0    10.0
    z     one   2.0         4.0    10.0
          two  18.0        36.0    90.0
    total      50.0       100.0   300.0