I got the following Karnaugh Maps but I am still having problems working out the expression for XOR from each table.
Table 1
-------
WZ
00 01 11 10
-----------------------
00 | | | | 1 |
-----------------------
01 | 1 | | | |
-----------------------
XY 11 | | | | 1 |
-----------------------
10 | 1 | | | |
-----------------------
Table 2
-------
WZ
00 01 11 10
-----------------------
00 | | 1 | | |
-----------------------
01 | | | 1 | |
-----------------------
XY 11 | | 1 | | |
-----------------------
10 | | | 1 | |
-----------------------
It is XORs, but how can I easily deduce the XOR expressions?
I would not dismiss the variable z from the expression, because I think, the expression ¬z·(¬x·y·¬w + ¬x·w·¬y + ¬y·¬w·x + w·y·x) is not equal to (¬x·y·¬w + ¬x·w·¬y + ¬y·¬w·x + w·y·x). That would mean, that the K-map contains four doubles of ones, but there is only four singles.
I would rather find the expression in the K-map and then use the laws of Boolean algebra.
For the first table:
¬x·¬y·w·¬z + ¬x·y·¬w·¬z + x·y·w·¬z + x·¬y·¬w·¬z
¬z·((¬x + ¬y + w)·(¬x + y + ¬w)·(x + y + w)·(x + ¬y + ¬w)) //distributivity
¬z· (¬x + ¬y + w)·(¬x + y + ¬w)·(x + y + w)·(x + ¬y + ¬w) //relaxed syntax
¬z· (¬x·¬x + ¬x·y + ¬x·¬w + ¬y·¬x + ¬y·y + ¬y·¬w + w·¬x + w·y + w·¬w)·
(x·x + x·¬y + x·¬w + y·x + y·¬y + y·¬w + w·x + w·¬y + w·¬w) //distributivity
Because of the laws of
the expression is equivalent to:
¬z· (¬x + 0 + ¬y·¬w + w·y + 0)·
( x + + 0 + y·¬w + + w·¬y + 0 )
¬z· (¬x + ¬y·¬w + w·y)·(x + y·¬w + w·¬y) //just formatted
¬z· (¬x·x + ¬x·y·¬w + ¬x·w·¬y
+ ¬y·¬w·x + ¬y·¬w·y·¬w + ¬y·¬w·w·¬y
+ w·y·x + w·y·y·¬w + w·y·w·¬y) //distributivity
¬z· ( 0 + ¬x·y·¬w + ¬x·w·¬y
+ ¬y·¬w·x + 0 + 0
+ w·y·x + 0 + 0 ) //using the three laws↑ again
¬z· (¬x·y·¬w + ¬x·w·¬y + ¬y·¬w·x + w·y·x) //how the 3-input XOR is defined
¬z· (x xor y xor w)
For the second table:
¬x·¬y·¬w·z + ¬x·y·w·z + x·y·¬w·z + x·¬y·w·z
z·((¬x + ¬y + ¬w)·(¬x + y + w)·(x + y + ¬w)·(x + ¬y + w)) //distributivity
z· (¬x + ¬y + ¬w)·(¬x + y + w)·(x + y + ¬w)·(x + ¬y + w) //relaxed syntax
z· (¬x·¬x + ¬x·y + ¬x·w + ¬y·¬x + ¬y·y + ¬y·w + ¬w·¬x + ¬w·y + ¬w·w)·
(x·x + x·¬y + x·w + y·x + y·¬y + y·w + ¬w·x + ¬w·¬y + ¬w·w) //distributivity
z· ( ¬x + + 0 + ¬y·w + + ¬w·y + 0 )·
( x + + 0 + y·w + + ¬w·¬y + 0 )
z· (¬x + ¬y·w + ¬w·y)·(x + y·w + ¬w·¬y) //just formatted
z· (¬x·x + ¬x·y·w + ¬x·¬w·¬y
+ ¬y·w·x + ¬y·w·y·w + ¬y·w·¬w·¬y
+ ¬w·y·x + ¬w·y·y·w + ¬w·y·¬w·¬y) //distributivity
z· ( 0 + ¬x·y·w + ¬x·¬w·¬y
+ ¬y·w·x + 0 + 0
+ ¬w·y·x + 0 + 0) //using the three laws↑ again
z· (¬x·y·w + ¬x·¬w·¬y + ¬y·w·x + ¬w·y·x) //how the 3-input XNOR is defined
z· (x xnor y xnor w)