Brendan D. Gregg (author of DTrace book) has interesting variant of profiling: the "Off-CPU" profiling (and Off-CPU Flame Graph; slides 2013, p112-137) to see, where the thread or application were blocked (was not executed by CPU, but waiting for I/O, pagefault handler, or descheduled due short of CPU resources):
This time reveals which code-paths are blocked and waiting while off-CPU, and for how long exactly. This differs from traditional profiling which often samples the activity of threads at a given interval, and (usually) only examine threads if they are executing work on-CPU.
He also can combine Off-CPU profile data and On-CPU profile together: http://www.brendangregg.com/FlameGraphs/hotcoldflamegraphs.html
The examples given by Gregg are made using dtrace
, which is not usually available in Linux OS. But there are some similar tools (ktap, systemtap, perf) and the perf
as I think has widest installed base. Usually perf
generated On-CPU profiles (which functions were executed more often on CPU).
perf
profiling tool in Linux?PS: There is link to systemtap variant of Off-CPU flamegraphs in the slides from LISA13, p124: "Yichun Zhang created these, and has been using them on Linux with SystemTap to collect the profile data. See: • http://agentzh.org/misc/slides/off-cpu-flame-graphs.pdf"" (CloudFlare Beer Meeting on 23 August 2013)
The perf technique I published[1] was a high-overhead workaround, until perf has BPF support for doing this.
Right now, the lowest cost way of generating an off-CPU flame graph on Linux is on a 4.6+ kernel (which has BPF stack trace support), and with bcc/BPF. I wrote a tool for it, offcputime[2], which can be run with a -f option for "folded output", suitable for feeding into flamegraph.pl. This offcputime tool does the timing and stack counting all in kernel content, and dumps a report that is then printed with symbols.
One day, I expect that perf itself will be able to do this as well: run a BPF program that does the in-kernel counting, and dumping of a report.
In the meantime, we can use bcc/BPF. If for some reason you can't use bcc, you can, right now, take that offcputime program and write it in C. A more complicated version is available in the Linux source, as samples/bpf/offwaketime*. With the new BPF features on Linux, if there's a will, there's a way.
[1] http://www.brendangregg.com/blog/2015-02-26/linux-perf-off-cpu-flame-graph.html
[2] https://github.com/iovisor/bcc/blob/master/tools/offcputime_example.txt