Hello good folks at Stackoverflow,
I ran a mapreduce code that finds the unique words in a file. The input dataset (file) was in a folder in HDFS. So I gave the name of the folder as input when I ran the mapreduce program.
I didn't realize that there were another 2 more files in the same folder. Mapreduce program went ahead and read thru all the 3 files and gave the output. The output is fine.
Is this the default behaviour of mapreduce? Meaning if you point to a folder and not just a file (as input dataset), the mapreduce consumes all the files in that folder? The reason I am surprised is that in the mapper, there is no code to read multiple files. I understand that the first argument args[0] in the driver program is the folder name I gave.
This is the driver code:
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class DataSort {
public static void main(String[] args) throws Exception {
/*
* Validate that two arguments were passed from the command line.
*/
if (args.length != 2) {
System.out.printf("Usage: StubDriver <input dir> <output dir>\n");
System.exit(-1);
}
Job job=Job.getInstance();
/*
* Specify the jar file that contains your driver, mapper, and reducer.
* Hadoop will transfer this jar file to nodes in your cluster running
* mapper and reducer tasks.
*/
job.setJarByClass(DataSort.class);
/*
* Specify an easily-decipherable name for the job.
* This job name will appear in reports and logs.
*/
job.setJobName("Data Sort");
/*
* TODO implement
*/
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(ValueIdentityMapper.class);
job.setReducerClass(IdentityReducer.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
/*
* Start the MapReduce job and wait for it to finish.
* If it finishes successfully, return 0. If not, return 1.
*/
boolean success = job.waitForCompletion(true);
System.exit(success ? 0 : 1);
}
}
Mapper Code:
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class ValueIdentityMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line=value.toString();
for (String word:line.split("\\W+"))
{
if (word.length()>0)
{
context.write(new Text(word),new IntWritable(1));
}
}
}
}
Reducer Code:
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class IdentityReducer extends Reducer<Text, IntWritable, Text, Text> {
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
String word="";
context.write(key, new Text(word));
}
}
Is this the default behaviour of mapreduce?
Not of mapreduce, just of the InputFormat you used.
FileInputFormat
API Reference
setInputPaths(JobConf conf, Path... inputPaths)
Set the array of
Path
s as the list of inputs for the map-reduce job.
Path
API Reference
Names a file or directory in a
FileSystem
.
So, when you say
there is no code to read multiple files
Yes, there actually is, use just didn't need to write it.
Mapper<LongWritable, Text,
properly handles all file-offsets for all files in the specified InputFormat
.