I am frequently needing to calculate mean and standard deviation for numeric arrays. So I've written a small protocol and extensions for numeric types that seems to work. I just would like feedback if there is anything wrong with how I have done this. Specifically, I am wondering if there is a better way to check if the type can be cast as a Double to avoid the need for the asDouble variable and init(_:Double)
constructor.
I know there are issues with protocols that allow for arithmetic, but this seems to work ok and saves me from putting the standard deviation function into classes that need it.
protocol Numeric {
var asDouble: Double { get }
init(_: Double)
}
extension Int: Numeric {var asDouble: Double { get {return Double(self)}}}
extension Float: Numeric {var asDouble: Double { get {return Double(self)}}}
extension Double: Numeric {var asDouble: Double { get {return Double(self)}}}
extension CGFloat: Numeric {var asDouble: Double { get {return Double(self)}}}
extension Array where Element: Numeric {
var mean : Element { get { return Element(self.reduce(0, combine: {$0.asDouble + $1.asDouble}) / Double(self.count))}}
var sd : Element { get {
let mu = self.reduce(0, combine: {$0.asDouble + $1.asDouble}) / Double(self.count)
let variances = self.map{pow(($0.asDouble - mu), 2)}
return Element(sqrt(variances.mean))
}}
}
edit: I know it's kind of pointless to get [Int].mean
and sd
, but I might use numeric elsewhere so it's for consistency..
edit: as @Severin Pappadeux pointed out, variance can be expressed in a manner that avoids the triple pass on the array - mean then map then mean. Here is the final standard deviation extension
extension Array where Element: Numeric {
var sd : Element { get {
let sss = self.reduce((0.0, 0.0)){ return ($0.0 + $1.asDouble, $0.1 + ($1.asDouble * $1.asDouble))}
let n = Double(self.count)
return Element(sqrt(sss.1/n - (sss.0/n * sss.0/n)))
}}
}
In Swift 3 you might (or might not) be able to save yourself some duplication with the FloatingPoint protocol, but otherwise what you're doing is exactly right.