pythonmatlabgeometrybounding-boxbounding

Minimal enclosing parallelogram in Python


I have a set of points defining a convex polygon, and would like to find the enclosing parallelogram with the minimum area using Python and/or NumPy.

Here are some possible useful resources, but I'm not able to make enough sense of them myself: minboundparallelogram(x,y,metric) in MATLAB
Paper on a couple of proposed algorithms

Any help greatly appreciated. An O(n) solution isn't critical.


Solution

  • Here is the pure Python O(n) implementation I used:

    import math
    
    """
    Minimal Enclosing Parallelogram
    
    area, v1, v2, v3, v4 = mep(convex_polygon)
    
    convex_polygon - array of points. Each point is a array [x, y] (1d array of 2 elements)
    points should be presented in clockwise order.
    
    the algorithm used is described in the following paper:
    http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.53.9659&rep=rep1&type=pdf
    """
    
    def distance(p1, p2, p):
        return abs(((p2[1]-p1[1])*p[0] - (p2[0]-p1[0])*p[1] + p2[0]*p1[1] - p2[1]*p1[0]) /
            math.sqrt((p2[1]-p1[1])**2 + (p2[0]-p1[0])**2))
    
    def antipodal_pairs(convex_polygon):
        l = []
        n = len(convex_polygon)
        p1, p2 = convex_polygon[0], convex_polygon[1]
    
        t, d_max = None, 0
        for p in range(1, n):
            d = distance(p1, p2, convex_polygon[p])
            if d > d_max:
                t, d_max = p, d
        l.append(t)
    
        for p in range(1, n):
            p1, p2 = convex_polygon[p % n], convex_polygon[(p+1) % n]
            _p, _pp = convex_polygon[t % n], convex_polygon[(t+1) % n]
            while distance(p1, p2, _pp) > distance(p1, p2, _p):
                t = (t + 1) % n
                _p, _pp = convex_polygon[t % n], convex_polygon[(t+1) % n]
            l.append(t)
    
        return l
    
    
    # returns score, area, points from top-left, clockwise , favouring low area
    def mep(convex_polygon):
        def compute_parallelogram(convex_polygon, l, z1, z2):
            def parallel_vector(a, b, c):
                v0 = [c[0]-a[0], c[1]-a[1]]
                v1 = [b[0]-c[0], b[1]-c[1]]
                return [c[0]-v0[0]-v1[0], c[1]-v0[1]-v1[1]]
    
            # finds intersection between lines, given 2 points on each line.
            # (x1, y1), (x2, y2) on 1st line, (x3, y3), (x4, y4) on 2nd line.
            def line_intersection(x1, y1, x2, y2, x3, y3, x4, y4):
                px = ((x1*y2 - y1*x2)*(x3 - x4) - (x1 - x2)*(x3*y4 - y3*x4))/((x1-x2)*(y3-y4) - (y1-y2)*(x3-x4))
                py = ((x1*y2 - y1*x2)*(y3 - y4) - (y1 - y2)*(x3*y4 - y3*x4))/((x1-x2)*(y3-y4) - (y1-y2)*(x3-x4))
                return px, py
    
    
            # from each antipodal point, draw a parallel vector,
            # so ap1->ap2 is parallel to p1->p2
            #    aq1->aq2 is parallel to q1->q2
            p1, p2 = convex_polygon[z1 % n], convex_polygon[(z1+1) % n]
            q1, q2 = convex_polygon[z2 % n], convex_polygon[(z2+1) % n]
            ap1, aq1 = convex_polygon[l[z1 % n]], convex_polygon[l[z2 % n]]
            ap2, aq2 = parallel_vector(p1, p2, ap1), parallel_vector(q1, q2, aq1)
    
            a = line_intersection(p1[0], p1[1], p2[0], p2[1], q1[0], q1[1], q2[0], q2[1])
            b = line_intersection(p1[0], p1[1], p2[0], p2[1], aq1[0], aq1[1], aq2[0], aq2[1])
            d = line_intersection(ap1[0], ap1[1], ap2[0], ap2[1], q1[0], q1[1], q2[0], q2[1])
            c = line_intersection(ap1[0], ap1[1], ap2[0], ap2[1], aq1[0], aq1[1], aq2[0], aq2[1])
    
            s = distance(a, b, c) * math.sqrt((b[0]-a[0])**2 + (b[1]-a[1])**2)
            return s, a, b, c, d
    
    
        z1, z2 = 0, 0
        n = len(convex_polygon)
    
        # for each edge, find antipodal vertice for it (step 1 in paper).
        l = antipodal_pairs(convex_polygon)
    
        so, ao, bo, co, do, z1o, z2o = 100000000000, None, None, None, None, None, None
    
        # step 2 in paper.
        for z1 in range(0, n):
            if z1 >= z2:
                z2 = z1 + 1
            p1, p2 = convex_polygon[z1 % n], convex_polygon[(z1+1) % n]
            a, b, c = convex_polygon[z2 % n], convex_polygon[(z2+1) % n], convex_polygon[l[z2 % n]]
            if distance(p1, p2, a) >= distance(p1, p2, b):
                continue
    
            while distance(p1, p2, c) > distance(p1, p2, b):
                z2 += 1
                a, b, c = convex_polygon[z2 % n], convex_polygon[(z2+1) % n], convex_polygon[l[z2 % n]]
    
            st, at, bt, ct, dt = compute_parallelogram(convex_polygon, l, z1, z2)
    
            if st < so:
                so, ao, bo, co, do, z1o, z2o = st, at, bt, ct, dt, z1, z2
    
        return so, ao, bo, co, do, z1o, z2o