I want to make a program to recognize the digit in an image. I follow the tutorial in scikit learn .
I can train and fit the svm classifier like the following.
First, I import the libraries and dataset
from sklearn import datasets, svm, metrics
digits = datasets.load_digits()
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
Second, I create the SVM model and train it with the dataset.
classifier = svm.SVC(gamma = 0.001)
classifier.fit(data[:n_samples], digits.target[:n_samples])
And then, I try to read my own image and use the function predict()
to recognize the digit.
I reshape the image into (8, 8) and then convert it to a 1D array.
img = misc.imread("w1.jpg")
img = misc.imresize(img, (8, 8))
img = img[:, :, 0]
Finally, when I print out the prediction, it returns [1]
predicted = classifier.predict(img.reshape((1,img.shape[0]*img.shape[1] )))
print predicted
Whatever I user others images, it still returns [1]
When I print out the "default" dataset of number "9", it looks like:
My image number "9" :
You can see the non-zero number is quite large for my image.
I dont know why. I am looking for help to solve my problem.
My best bet would be that there is a problem with your data types and array shapes.
It looks like you are training on numpy arrays that are of the type np.float64
(or possibly np.float32
on 32 bit systems, I don't remember) and where each image has the shape (64,)
.
Meanwhile your input image for prediction, after the resizing operation in your code, is of type uint8
and shape (1, 64)
.
I would first try changing the shape of your input image since dtype conversions often just work as you would expect. So change this line:
predicted = classifier.predict(img.reshape((1,img.shape[0]*img.shape[1] )))
to this:
predicted = classifier.predict(img.reshape(img.shape[0]*img.shape[1]))
If that doesn't fix it, you can always try recasting the data type as well with
img = img.astype(digits.images.dtype)
.
I hope that helps. Debugging by proxy is a lot harder than actually sitting in front of your computer :)
Edit: According to the SciPy documentation, the training data contains integer values from 0 to 16. The values in your input image should be scaled to fit the same interval. (http://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits)