pythonpandasdataframegroup-byaggregate

Group By a Column and Sum contents of another column


I have a dataframe merged_df_energy:

+------------------------+------------------------+------------------------+--------------+
| ACT_TIME_AERATEUR_1_F1 | ACT_TIME_AERATEUR_1_F3 | ACT_TIME_AERATEUR_1_F5 | class_energy |
+------------------------+------------------------+------------------------+--------------+
| 63.333333              | 63.333333              | 63.333333              | low          |
| 0                      | 0                      | 0                      | high         |
| 45.67                  | 0                      | 55.94                  | high         |
| 0                      | 0                      | 23.99                  | low          |
| 0                      | 20                     | 23.99                  | medium       |
+------------------------+------------------------+------------------------+--------------+

I would like to create for each ACT_TIME_AERATEUR_1_Fx (ACT_TIME_AERATEUR_1_F1, ACT_TIME_AERATEUR_1_F3 and ACT_TIME_AERATEUR_1_F5) a dataframe which contains these columns: class_energy and sum_time

For example for the dataframe corresponding to ACT_TIME_AERATEUR_1_F1:

+-----------------+-----------+
|  class_energy   | sum_time  |
+-----------------+-----------+
| low             | 63.333333 |
| medium          | 0         |
| high            | 45.67     |
+-----------------+-----------+

I thing to do I should use the group by like this:

data.groupby(by=['class_energy'])['sum_time'].sum()

How can I do this?


Solution

  • You can add all columns to [] for aggregating:

    print (df.groupby(by=['class_energy'])['ACT_TIME_AERATEUR_1_F1', 'ACT_TIME_AERATEUR_1_F3','ACT_TIME_AERATEUR_1_F5'].sum())
                  ACT_TIME_AERATEUR_1_F1  ACT_TIME_AERATEUR_1_F3  \
    class_energy                                                   
    high                       45.670000                0.000000   
    low                        63.333333               63.333333   
    medium                      0.000000               20.000000   
    
                  ACT_TIME_AERATEUR_1_F5  
    class_energy                          
    high                       55.940000  
    low                        87.323333  
    medium                     23.990000  
    

    You can use also parameter as_index=False:

    print (df.groupby(by=['class_energy'], as_index=False)['ACT_TIME_AERATEUR_1_F1', 'ACT_TIME_AERATEUR_1_F3','ACT_TIME_AERATEUR_1_F5'].sum())
      class_energy  ACT_TIME_AERATEUR_1_F1  ACT_TIME_AERATEUR_1_F3  \
    0         high               45.670000                0.000000   
    1          low               63.333333               63.333333   
    2       medium                0.000000               20.000000   
    
       ACT_TIME_AERATEUR_1_F5  
    0               55.940000  
    1               87.323333  
    2               23.990000  
    

    If need aggregate only first 3 columns:

    print (df.groupby(by=['class_energy'], as_index=False)[df.columns[:3]].sum())
      class_energy  ACT_TIME_AERATEUR_1_F1  ACT_TIME_AERATEUR_1_F3  \
    0         high               45.670000                0.000000   
    1          low               63.333333               63.333333   
    2       medium                0.000000               20.000000   
    
       ACT_TIME_AERATEUR_1_F5  
    0               55.940000  
    1               87.323333  
    2               23.990000  
    

    ...or all columns without last:

    print (df.groupby(by=['class_energy'], as_index=False)[df.columns[:-1]].sum())
      class_energy  ACT_TIME_AERATEUR_1_F1  ACT_TIME_AERATEUR_1_F3  \
    0         high               45.670000                0.000000   
    1          low               63.333333               63.333333   
    2       medium                0.000000               20.000000   
    
       ACT_TIME_AERATEUR_1_F5  
    0               55.940000  
    1               87.323333  
    2               23.990000