python-3.xsympy

How to get the Gradient and Hessian | Sympy


Here is the situation: I have a symbolic function lamb which is function of the elements of the variable z and the functions elements of the variable h. Here is an image of the lamb symbolic function

enter image description here.

Now I would like the compute the Gradient and Hessian of this function with respect to the variables eta and xi. Of course I googled for it but I could not find a straight way for doing this. What I found is here, but as I said it does not seen to be the best approach for this situation. Any idea? Bellow, the source code. Thanks.

from sympy import Symbol, Matrix, Function, simplify

eta = Symbol('eta')
xi = Symbol('xi')

x = Matrix([[xi],[eta]])

h = [Function('h_'+str(i+1))(x[0],x[1]) for i in range(3)]
z = [Symbol('z_'+str(i+1)) for i in range(3)]

lamb = 0
for i in range(3):
    lamb += 1/(2*sigma**2)*(z[i]-h[i])**2
simplify(lamb)

Solution

  • You could either use the very Pythonic way suggested by Stelios, or use some recently added features to SymPy:

    In [14]: from sympy.tensor.array import derive_by_array
    
    In [15]: derive_by_array(lamb, (eta, xi))
    Out[15]:
    [-(z_1 - h_1(xi, eta))*Derivative(h_1(xi, eta), eta)/sigma**2 - (z_2 - h_2(xi,
     eta))*Derivative(h_2(xi, eta), eta)/sigma**2 - (z_3 - h_3(xi, eta))*Derivativ
    e(h_3(xi, eta), eta)/sigma**2, -(z_1 - h_1(xi, eta))*Derivative(h_1(xi, eta), 
    xi)/sigma**2 - (z_2 - h_2(xi, eta))*Derivative(h_2(xi, eta), xi)/sigma**2 - (z
    _3 - h_3(xi, eta))*Derivative(h_3(xi, eta), xi)/sigma**2]
    

    Unfortunately the printer is still missing for N-dim arrays, you can visualize by converting them to a list (or, alternatively, using .tomatrix()):

    In [16]: list(derive_by_array(lamb, (eta, xi)))
    Out[16]: 
    ⎡                  ∂                              ∂                           
    ⎢  (z₁ - h₁(ξ, η))⋅──(h₁(ξ, η))   (z₂ - h₂(ξ, η))⋅──(h₂(ξ, η))   (z₃ - h₃(ξ, η
    ⎢                  ∂η                             ∂η                          
    ⎢- ──────────────────────────── - ──────────────────────────── - ─────────────
    ⎢                2                              2                             
    ⎣               σ                              σ                              
    
       ∂                               ∂                              ∂           
    ))⋅──(h₃(ξ, η))    (z₁ - h₁(ξ, η))⋅──(h₁(ξ, η))   (z₂ - h₂(ξ, η))⋅──(h₂(ξ, η))
       ∂η                              ∂ξ                             ∂ξ          
    ───────────────, - ──────────────────────────── - ────────────────────────────
     2                               2                              2             
    σ                               σ                              σ              
    
                       ∂           ⎤
       (z₃ - h₃(ξ, η))⋅──(h₃(ξ, η))⎥
                       ∂ξ          ⎥
     - ────────────────────────────⎥
                     2             ⎥
                    σ              ⎦
    

    For the Hessian, just repeat the procedure twice:

    In [18]: list(derive_by_array(derive_by_array(lamb, (eta, xi)), (eta, xi)))
    Out[18]: 
    ⎡                    2                               2                        
    ⎢                   ∂                               ∂                         
    ⎢  (z₁ - h₁(ξ, η))⋅───(h₁(ξ, η))   (z₂ - h₂(ξ, η))⋅───(h₂(ξ, η))   (z₃ - h₃(ξ,
    ⎢                    2                               2                        
    ⎢                  ∂η                              ∂η                         
    ⎢- ───────────────────────────── - ───────────────────────────── - ───────────
    ⎢                 2                               2                           
    ⎣                σ                               σ                            
    
           2                                                                      
          ∂                            2                 2                 2      
     η))⋅───(h₃(ξ, η))   ⎛∂           ⎞    ⎛∂           ⎞    ⎛∂           ⎞       
           2             ⎜──(h₁(ξ, η))⎟    ⎜──(h₂(ξ, η))⎟    ⎜──(h₃(ξ, η))⎟     (z
         ∂η              ⎝∂η          ⎠    ⎝∂η          ⎠    ⎝∂η          ⎠       
    ────────────────── + ─────────────── + ─────────────── + ───────────────, - ──
        2                        2                 2                 2            
       σ                        σ                 σ                 σ             
    
    
                     2                                 2                          
                    ∂                                 ∂                           
    ₁ - h₁(ξ, η))⋅─────(h₁(ξ, η))   (z₂ - h₂(ξ, η))⋅─────(h₂(ξ, η))   (z₃ - h₃(ξ, 
                  ∂ξ ∂η                             ∂ξ ∂η                         
    ───────────────────────────── - ─────────────────────────────── - ────────────
                  2                                 2                             
                 σ                                 σ                              
    
    
           2                                                                      
          ∂               ∂            ∂              ∂            ∂              
    η))⋅─────(h₃(ξ, η))   ──(h₁(ξ, η))⋅──(h₁(ξ, η))   ──(h₂(ξ, η))⋅──(h₂(ξ, η))   
        ∂ξ ∂η             ∂η           ∂ξ             ∂η           ∂ξ             
    ─────────────────── + ───────────────────────── + ───────────────────────── + 
        2                              2                           2              
       σ                              σ                           σ               
    
    
                                                    2                             
    ∂            ∂                                 ∂                              
    ──(h₃(ξ, η))⋅──(h₃(ξ, η))    (z₁ - h₁(ξ, η))⋅─────(h₁(ξ, η))   (z₂ - h₂(ξ, η))
    ∂η           ∂ξ                              ∂ξ ∂η                            
    ─────────────────────────, - ─────────────────────────────── - ───────────────
                 2                               2                                
                σ                               σ                                 
    
    
        2                                 2                                       
       ∂                                 ∂               ∂            ∂           
    ⋅─────(h₂(ξ, η))   (z₃ - h₃(ξ, η))⋅─────(h₃(ξ, η))   ──(h₁(ξ, η))⋅──(h₁(ξ, η))
     ∂ξ ∂η                             ∂ξ ∂η             ∂η           ∂ξ          
    ──────────────── - ─────────────────────────────── + ─────────────────────────
     2                                 2                              2           
    σ                                 σ                              σ            
    
    
                                                                                 ∂
       ∂            ∂              ∂            ∂               (z₁ - h₁(ξ, η))⋅──
       ──(h₂(ξ, η))⋅──(h₂(ξ, η))   ──(h₃(ξ, η))⋅──(h₃(ξ, η))                      
       ∂η           ∂ξ             ∂η           ∂ξ                              ∂ξ
     + ───────────────────────── + ─────────────────────────, - ──────────────────
                    2                           2                              2  
                   σ                           σ                              σ   
    
    2                               2                               2             
                                   ∂                               ∂              
    ─(h₁(ξ, η))   (z₂ - h₂(ξ, η))⋅───(h₂(ξ, η))   (z₃ - h₃(ξ, η))⋅───(h₃(ξ, η))   
    2                               2                               2             
                                  ∂ξ                              ∂ξ              
    ─────────── - ───────────────────────────── - ───────────────────────────── + 
                                 2                               2                
                                σ                               σ                 
    
                                                       ⎤
                  2                 2                 2⎥
    ⎛∂           ⎞    ⎛∂           ⎞    ⎛∂           ⎞ ⎥
    ⎜──(h₁(ξ, η))⎟    ⎜──(h₂(ξ, η))⎟    ⎜──(h₃(ξ, η))⎟ ⎥
    ⎝∂ξ          ⎠    ⎝∂ξ          ⎠    ⎝∂ξ          ⎠ ⎥
    ─────────────── + ─────────────── + ───────────────⎥
            2                 2                 2      ⎥
           σ                 σ                 σ       ⎦