I'm using opencv in python 2.7.
This is my code:
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('messi.jpg',0)
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
plt.subplot(131),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(132),plt.imshow(magnitude_spectrum, cmap = 'gray'), plt.colorbar(cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
I found the solution.
To resize the colorbar
I use fraction
parameter and it's corresponding value in colorbar
. Thanks to bejota's answer.
Regarding the magnitude value, I found that as brighter are the vertices in the magnitude image the greater the contrast in brightness of the original grayscale image. Try the code below using various images.
This is my final code:
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('messi.jpg',0)
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray'), plt.colorbar(cmap = 'gray',fraction=0.03, pad=0.04)
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()