I am trying to construct trend following momentum portfolio strategy based on S&P500 index (momthly data)
I used Kaufmann's fractal efficiency ratio to filter out whipsaw signal (http://etfhq.com/blog/2011/02/07/kaufmans-efficiency-ratio/)
I succeeded in coding, but it's very clumsy, so I need advice for better code.
Strategy
I am having a difficulty in averaging 1 to 12 efficiency ratio. Of course I know that it can be simply implemented by for loop and it's very easy task, but I failed.
I need more concise and refined code, anybody can help me?
a['meanfractal']
bothers me in the code below..
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import pandas_datareader.data as web
def price(stock, start):
price = web.DataReader(name=stock, data_source='yahoo', start=start)['Adj Close']
return price.div(price.iat[0]).resample('M').last().to_frame('price')
a = price('SPY','2000-01-01')
def fractal(a,p):
a['direction'] = np.where(a['price'].diff(p)>0,1,0)
a['abs'] = a['price'].diff(p).abs()
a['volatility'] = a.price.diff().abs().rolling(p).sum()
a['fractal'] = a['abs'].values/a['volatility'].values*a['direction'].values
return a['fractal']
def meanfractal(a):
a['meanfractal']= (fractal(a,1).values+fractal(a,2).values+fractal(a,3).values+fractal(a,4).values+fractal(a,5).values+fractal(a,6).values+fractal(a,7).values+fractal(a,8).values+fractal(a,9).values+fractal(a,10).values+fractal(a,11).values+fractal(a,12).values)/12
a['portfolio1'] = (a.price/a.price.shift(1).values*a.meanfractal.shift(1).values+(1-a.meanfractal.shift(1).values)*1.03**(1/12)).cumprod()
a['portfolio2'] = ((a.price/a.price.shift(1).values*a.meanfractal.shift(1).values+1.03**(1/12))/(1+a.meanfractal.shift(1))).cumprod()
a=a.dropna()
a=a.div(a.ix[0])
return a[['price','portfolio1','portfolio2']].plot()
print(a)
plt.show()
You could simplify further by storing the values corresponding to p
in a DF
rather than computing for each series separately as shown:
def fractal(a, p):
df = pd.DataFrame()
for count in range(1,p+1):
a['direction'] = np.where(a['price'].diff(count)>0,1,0)
a['abs'] = a['price'].diff(count).abs()
a['volatility'] = a.price.diff().abs().rolling(count).sum()
a['fractal'] = a['abs']/a['volatility']*a['direction']
df = pd.concat([df, a['fractal']], axis=1)
return df
Then, you could assign the repeating operations to a variable which reduces the re-computation time.
def meanfractal(a, l=12):
a['meanfractal']= pd.DataFrame(fractal(a, l)).sum(1,skipna=False)/l
mean_shift = a['meanfractal'].shift(1)
price_shift = a['price'].shift(1)
factor = 1.03**(1/l)
a['portfolio1'] = (a['price']/price_shift*mean_shift+(1-mean_shift)*factor).cumprod()
a['portfolio2'] = ((a['price']/price_shift*mean_shift+factor)/(1+mean_shift)).cumprod()
a.dropna(inplace=True)
a = a.div(a.ix[0])
return a[['price','portfolio1','portfolio2']].plot()
Resulting plot obtained:
meanfractal(a)
Note: If speed is not a major concern, you could perform the operations via the built-in methods present in pandas
instead of converting them into it's corresponding numpy
array values.