I have a simple numpy array (e.g. [1,4,2,3,1]
) and want to project it into a binary matrix, where each value in the array maps to an indicator in that column of the matrix.
For example, this array would map to a matrix like:
[1], => [1,0,0,0],
[4], [0,0,0,1],
[2], [0,1,0,0],
[3], [0,0,1,0],
[1] [1,0,0,0]
I can do this with iterating and list comprehensions, but is there an elegant numpy solution?
We can use broadacsting
-
(a[:,None] == np.arange(a.max())+1).astype(int)
Sample run -
In [28]: a = np.array([1,4,2,3,1,2,1,4])
In [29]: a[:,None] == np.arange(a.max())+1 # Booelan array
Out[29]:
array([[ True, False, False, False],
[False, False, False, True],
[False, True, False, False],
[False, False, True, False],
[ True, False, False, False],
[False, True, False, False],
[ True, False, False, False],
[False, False, False, True]], dtype=bool)
In [30]: (a[:,None] == np.arange(a.max())+1).astype(int) # Int array
Out[30]:
array([[1, 0, 0, 0],
[0, 0, 0, 1],
[0, 1, 0, 0],
[0, 0, 1, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[1, 0, 0, 0],
[0, 0, 0, 1]])
For mapping integers that are not sequential and expecting no all False
columns, we could use np.unique(a)
directly for comparison against the 2D
version of input array a
, like so -
In [49]: a = np.array([14,12,33,71,97])
In [50]: a[:,None] == np.unique(a) # Boolean array
Out[50]:
array([[False, True, False, False, False],
[ True, False, False, False, False],
[False, False, True, False, False],
[False, False, False, True, False],
[False, False, False, False, True]], dtype=bool)
In [51]: (a[:,None] == np.unique(a)).astype(int) # Int array
Out[51]:
array([[0, 1, 0, 0, 0],
[1, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]])