Consider the following example:
template <typename T>
class A {
private:
typedef typename T::C C;
};
template <typename T>
class B : public A<B<T>> {
public:
typedef T C;
};
int main() {
B<int> b;
}
Compiling it with GCC gives the following error:
test.cc:5:23: error: no type named 'C' in 'B<int>'
typedef typename T::C C;
~~~~~~~~~~~~^
test.cc:9:18: note: in instantiation of template class 'A<B<int> >' requested here
class B : public A<B<T>> {
^
test.cc:15:10: note: in instantiation of template class 'B<int>' requested here
B<int> b;
^
Why does compiler give an error if B::C
is defined and how to fix it?
At this point,
class B : public A<B<T>> {
… class B
is incomplete. Class A
can't look inside it.
The C
type definition inside B
is accessible from that point inside B
, and on. It's also available inside function bodies in B
because you can regard a function definition inside the class definition as a shorthand for placing it after the class. But an incomplete class contains nothing as viewed from outside: all that outside code can do is form pointers and references and use the class as template argument.
template< class C >
using Ungood = typename C::Number;
struct S
{
void foo() { Number x; (void) x; } // OK
Ungood<S> uhuh; //! Nyet.
using Number = double;
};
auto main() -> int {}
You can fix your code by changing the design. The most obvious is to pass the type as a separate template argument. But depending on what you're trying to achieve it may be that the inheritance you currently have, isn't really needed or even useful.