Given two sets, e.g.:
{A B C}, {1 2 3 4 5 6}
I want to generate the Cartesian product in an order that puts as much space as possible between equal elements. For example, [A1, A2, A3, A4, A5, A6, B1…]
is no good because all the A
s are next to each other. An acceptable solution would be going "down the diagonals" and then every time it wraps offsetting by one, e.g.:
[A1, B2, C3, A4, B5, C6, A2, B3, C4, A5, B6, C1, A3…]
Expressed visually:
| | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | | | | | | | | | | | | | | | | | |
| 2 | | 2 | | | | | | | | | | | | | | | | |
| 3 | | | 3 | | | | | | | | | | | | | | | |
| 4 | | | | 4 | | | | | | | | | | | | | | |
| 5 | | | | | 5 | | | | | | | | | | | | | |
| 6 | | | | | | 6 | | | | | | | | | | | | |
| 1 | | | | | | | | | | | | | | | | | | |
| 2 | | | | | | | 7 | | | | | | | | | | | |
| 3 | | | | | | | | 8 | | | | | | | | | | |
| 4 | | | | | | | | | 9 | | | | | | | | | |
| 5 | | | | | | | | | | 10| | | | | | | | |
| 6 | | | | | | | | | | | 11| | | | | | | |
| 1 | | | | | | | | | | | | 12| | | | | | |
| 2 | | | | | | | | | | | | | | | | | | |
| 3 | | | | | | | | | | | | | 13| | | | | |
| 4 | | | | | | | | | | | | | | 14| | | | |
| 5 | | | | | | | | | | | | | | | 15| | | |
| 6 | | | | | | | | | | | | | | | | 16| | |
| 1 | | | | | | | | | | | | | | | | | 17| |
| 2 | | | | | | | | | | | | | | | | | | 18|
or, equivalently but without repeating the rows/columns:
| | A | B | C |
|---|----|----|----|
| 1 | 1 | 17 | 15 |
| 2 | 4 | 2 | 18 |
| 3 | 7 | 5 | 3 |
| 4 | 10 | 8 | 6 |
| 5 | 13 | 11 | 9 |
| 6 | 16 | 14 | 12 |
I imagine there are other solutions too, but that's the one I found easiest to think about. But I've been banging my head against the wall trying to figure out how to express it generically—it's a convenient thing that the cardinality of the two sets are multiples of each other, but I want the algorithm to do The Right Thing for sets of, say, size 5 and 7. Or size 12 and 69 (that's a real example!).
Are there any established algorithms for this? I keep getting distracted thinking of how rational numbers are mapped onto the set of natural numbers (to prove that they're countable), but the path it takes through ℕ×ℕ doesn't work for this case.
It so happens the application is being written in Ruby, but I don't care about the language. Pseudocode, Ruby, Python, Java, Clojure, Javascript, CL, a paragraph in English—choose your favorite.
Proof-of-concept solution in Python (soon to be ported to Ruby and hooked up with Rails):
import sys
letters = sys.argv[1]
MAX_NUM = 6
letter_pos = 0
for i in xrange(MAX_NUM):
for j in xrange(len(letters)):
num = ((i + j) % MAX_NUM) + 1
symbol = letters[letter_pos % len(letters)]
print "[%s %s]"%(symbol, num)
letter_pos += 1
String letters = "ABC";
int MAX_NUM = 6;
int letterPos = 0;
for (int i=0; i < MAX_NUM; ++i) {
for (int j=0; j < MAX_NUM; ++j) {
int num = ((i + j) % MAX_NUM) + 1;
char symbol = letters.charAt(letterPos % letters.length);
String output = symbol + "" + num;
++letterPos;
}
}