javascript3dthree.jsuv-mappingsimplex-noise

Smoothly mapping a 2D uv point onto a 3D xyz sphere


I have been trying to procedurally generate a sphere's surface using simplex noise, and I figured that in order to get smooth, non-distorted noise I need to map each uv pixel to an xyz coordinate. I have tried a few different algorithms, with the following being my favourite:

function convert2d3d(r1, r2, x, y) {
    let z = -1 + 2 * x / r1;
    let phi = 2 * Math.PI * y / r1;
    let theta = Math.asin(z);
    return {
        x: r2 * Math.cos(theta) * Math.cos(phi),
        y: r2 * Math.cos(theta) * Math.sin(phi),
        z: r2 * z,
    }
}

While the points generated look continuous, there is severe distortion around the texture seams, and where the texture is stretched the most:

simplex noise

I am aware what I am trying to do is called UV mapping, yet I'm struggling to implement it correctly. Either I get severe distortion, or ugly seams. To render the sphere I am using Three.JS MeshPhongMaterial and for the noise I am using noisejs.


Solution

  • Do you want something like THIS?
    In the gui at the top right under scene -> geometry select the sphere.

    No need to mess with UVs :)

    Vertex shader from the demo linked above:

    varying vec3 vPosition;
    void main() {
      vPosition = normalize(position);
      gl_Position = projectionMatrix * modelViewMatrix * vec4(position,1.0);
    }
    

    Fragment Shader from the demo linked above:

    varying vec3 vPosition;
    uniform float scale;
    
    //
    // Description : Array and textureless GLSL 2D/3D/4D simplex 
    //               noise functions.
    //      Author : Ian McEwan, Ashima Arts.
    //  Maintainer : ijm
    //     Lastmod : 20110822 (ijm)
    //     License : Copyright (C) 2011 Ashima Arts. All rights reserved.
    //               Distributed under the MIT License. See LICENSE file.
    //               https://github.com/ashima/webgl-noise
    // 
    
    vec3 mod289(vec3 x) {
      return x - floor(x * (1.0 / 289.0)) * 289.0;
    }
    
    vec4 mod289(vec4 x) {
      return x - floor(x * (1.0 / 289.0)) * 289.0;
    }
    
    vec4 permute(vec4 x) {
         return mod289(((x*34.0)+1.0)*x);
    }
    
    vec4 taylorInvSqrt(vec4 r)
    {
      return 1.79284291400159 - 0.85373472095314 * r;
    }
    
    float snoise(vec3 v)
      { 
      const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
      const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);
    
    // First corner
      vec3 i  = floor(v + dot(v, C.yyy) );
      vec3 x0 =   v - i + dot(i, C.xxx) ;
    
    // Other corners
      vec3 g = step(x0.yzx, x0.xyz);
      vec3 l = 1.0 - g;
      vec3 i1 = min( g.xyz, l.zxy );
      vec3 i2 = max( g.xyz, l.zxy );
    
      //   x0 = x0 - 0.0 + 0.0 * C.xxx;
      //   x1 = x0 - i1  + 1.0 * C.xxx;
      //   x2 = x0 - i2  + 2.0 * C.xxx;
      //   x3 = x0 - 1.0 + 3.0 * C.xxx;
      vec3 x1 = x0 - i1 + C.xxx;
      vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
      vec3 x3 = x0 - D.yyy;      // -1.0+3.0*C.x = -0.5 = -D.y
    
    // Permutations
      i = mod289(i); 
      vec4 p = permute( permute( permute( 
                 i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
               + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) 
               + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
    
    // Gradients: 7x7 points over a square, mapped onto an octahedron.
    // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
      float n_ = 0.142857142857; // 1.0/7.0
      vec3  ns = n_ * D.wyz - D.xzx;
    
      vec4 j = p - 49.0 * floor(p * ns.z * ns.z);  //  mod(p,7*7)
    
      vec4 x_ = floor(j * ns.z);
      vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)
    
      vec4 x = x_ *ns.x + ns.yyyy;
      vec4 y = y_ *ns.x + ns.yyyy;
      vec4 h = 1.0 - abs(x) - abs(y);
    
      vec4 b0 = vec4( x.xy, y.xy );
      vec4 b1 = vec4( x.zw, y.zw );
    
      //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
      //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
      vec4 s0 = floor(b0)*2.0 + 1.0;
      vec4 s1 = floor(b1)*2.0 + 1.0;
      vec4 sh = -step(h, vec4(0.0));
    
      vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
      vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
    
      vec3 p0 = vec3(a0.xy,h.x);
      vec3 p1 = vec3(a0.zw,h.y);
      vec3 p2 = vec3(a1.xy,h.z);
      vec3 p3 = vec3(a1.zw,h.w);
    
    //Normalise gradients
      vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
      p0 *= norm.x;
      p1 *= norm.y;
      p2 *= norm.z;
      p3 *= norm.w;
    
    // Mix final noise value
      vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
      m = m * m;
      return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), 
                                    dot(p2,x2), dot(p3,x3) ) );
      }
    
    void main() {
      float n = snoise(vPosition * scale);
      gl_FragColor = vec4(1.0 * n, 1.0 * n, 1.0 * n, 1.0);
    }
    

    The above takes a scale uniform of type float.

    var uniforms = {
        scale: { type: "f", value: 10.0 }
    };
    

    More ShaderMaterial demos