pythonapache-sparkpysparkfixed-width

pyspark parse fixed width text file


Trying to parse a fixed width text file.

my text file looks like the following and I need a row id, date, a string, and an integer:

00101292017you1234
00201302017 me5678

I can read the text file to an RDD using sc.textFile(path). I can createDataFrame with a parsed RDD and a schema. It's the parsing in between those two steps.


Solution

  • Spark's substr function can handle fixed-width columns, for example:

    df = spark.read.text("/tmp/sample.txt")
    df.select(
        df.value.substr(1,3).alias('id'),
        df.value.substr(4,8).alias('date'),
        df.value.substr(12,3).alias('string'),
        df.value.substr(15,4).cast('integer').alias('integer')
    ).show()
    

    will result in:

    +---+--------+------+-------+
    | id|    date|string|integer|
    +---+--------+------+-------+
    |001|01292017|   you|   1234|
    |002|01302017|    me|   5678|
    +---+--------+------+-------+
    

    Having splitted columns you can reformat and use them as in normal spark dataframe.