Data flag
2017-01-01 17.2 False
2017-01-02 17.0 False
2017-01-03 16.8 False
2017-01-04 18.3 False
2017-01-05 19.1 True
...
2017-12-28 20.1 False
2017-12-29 19.8 False
2017-12-30 18.9 False
2017-12-31 19.5 False
There is a pandas dataframe that has values and flag. I want to calculate mean values by rolling(window=30), if the flag is "NOT TRUE".
You can use pandas.rolling_mean()
while subsetting the dataframe to only include entries where df.flag
is false (the ~
operator inverts the truth of the boolean series, getting all values where df.flag
is False
).
pandas.rolling_mean(df[~df.flag], window=30)