I have a case much like this one:
Example DataFrame:
from pyspark.sql.types import *
schema = StructType([ # schema
StructField("id", StringType(), True),
StructField("email", ArrayType(StringType()), True)])
df = spark.createDataFrame([{"id": "id1"},
{"id": "id2", "email": None},
{"id": "id3","email": ["email1@gmail.com"]},
{"id": "id4", "email": ["email1@gmail.com", "email2@gmail.com"]}],
schema=schema)
df.show(truncate=False)
+---+------------------------------------+
|id |email |
+---+------------------------------------+
|id1|null |
|id2|null |
|id3|[email1@gmail.com] |
|id4|[email1@gmail.com, email2@gmail.com]|
+---+------------------------------------+
I want to insert this data into Elasticsearch, so as far as I researched, I have to transform into the indexing format:
def parseTest(r):
if r['email'] is None:
return r['id'],{"id":r['id']}
else:
return r['id'],{"id":r['id'],"email":r['email']}
df2 = df.rdd.map(lambda row: parseTest(row))
df2.top(4)
[('id4', {'email': ['email1@gmail.com', 'email2@gmail.com'], 'id': 'id4'}),
('id3', {'email': ['email1@gmail.com'], 'id': 'id3'}),
('id2', {'id': 'id2'}),
('id1', {'id': 'id1'})]
Then I try to insert:
es_conf = {"es.nodes" : "node1.com,node2.com",
"es.resource": "index/type"}
df2.saveAsNewAPIHadoopFile(
path='-',
outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",
keyClass="org.apache.hadoop.io.NullWritable",
valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
conf=es_conf)
And I get this:
org.apache.spark.SparkException: Data of type java.util.ArrayList cannot be used
Spark v 2.1.0
ES v 2.4.4
Without the email
field it works fine, I found some proposed solution using the es.output.json: true
and json.dumps
, but it appeared to be for version 5, so I tried in another cluster I have with ES v5
df3 = df2.map(json.dumps)
df3.top(4)
['["id4", {"email": ["email1@gmail.com", "email2@gmail.com"], "id": "id4"}]',
'["id3", {"email": ["email1@gmail.com"], "id": "id3"}]',
'["id2", {"id": "id2"}]',
'["id1", {"id": "id1"}]']
es_conf2 = {"es.nodes" : "anothernode1.com,anothernode2.com",
"es.output.json": "true",
"es.resource": "index/type"}
df3.saveAsNewAPIHadoopFile(
path='-',
outputFormatClass="org.elasticsearch.hadoop.mr.EsOutputFormat",
keyClass="org.apache.hadoop.io.NullWritable",
valueClass="org.elasticsearch.hadoop.mr.LinkedMapWritable",
conf=es_conf2)
Then I get:
RDD element of type java.lang.String cannot be used
Spark v 2.1.0
ES v 5.2.0
feelsbadman
I found another way to do the same job, by using the write
method of a dataframe object.
So, following the first section:
from pyspark.sql.types import *
schema = StructType([ # schema
StructField("id", StringType(), True),
StructField("email", ArrayType(StringType()), True)])
df = spark.createDataFrame([{"id": "id1"},
{"id": "id2", "email": None},
{"id": "id3","email": ["email1@gmail.com"]},
{"id": "id4", "email": ["email1@gmail.com", "email2@gmail.com"]}],
schema=schema)
df.show(truncate=False)
+---+------------------------------------+
|id |email |
+---+------------------------------------+
|id1|null |
|id2|null |
|id3|[email1@gmail.com] |
|id4|[email1@gmail.com, email2@gmail.com]|
+---+------------------------------------+
You just need to:
df.write\
.format("org.elasticsearch.spark.sql")\
.option("es.nodes","node1.com,node2.com")\
.option("es.resource","index/type")\
.option("es.mapping.id", "id")\
.save()
No need to transform into a RDD or modify in any manner.