ralgorithmmachine-learninglogistic-regressioncost-based-optimizer

Applying Cost Functions in R


I am in the beginning stages of machine learning in R and I find it hard to believe that there are no packages to solving the cost function for different types of regression algorithms. For example, if I want to solve the cost function for a logistic regression, the manual way would be below:

https://www.r-bloggers.com/logistic-regression-with-r-step-by-step-implementation-part-2/

# Implement Sigmoid function
sigmoid <- function(z)
{
g <- 1/(1+exp(-z))
return(g)
}

#Cost Function
cost <- function(theta)
{
m <- nrow(X)
g <- sigmoid(X%*%theta)
J <- (1/m)*sum((-Y*log(g)) - ((1-Y)*log(1-g)))
return(J)
}

##Intial theta
initial_theta <- rep(0,ncol(X))

#Cost at inital theta
cost(initial_theta)

In the glm function is there a way to automatically do this? Or for each algorithm that I apply, do I need to manually do it like this?


Solution

  • We could use optim for optimization or use glm directly

    set.seed(1)
    X <- matrix(rnorm(1000), ncol=10) # some random data
    Y <- sample(0:1, 100, replace=TRUE)
    
    # Implement Sigmoid function
    sigmoid <- function(z) {
      g <- 1/(1+exp(-z))
      return(g)
    }
    
    cost.glm <- function(theta,X) {
      m <- nrow(X)
      g <- sigmoid(X%*%theta)
      (1/m)*sum((-Y*log(g)) - ((1-Y)*log(1-g)))
    }
    
    X1 <- cbind(1, X)
    optim(par=rep(0,ncol(X1)), fn = cost.glm, method='CG',
          X=X1, control=list(trace=TRUE))
    #$par 
    #[1] -0.067896075 -0.102393236 -0.295101743  0.616223350  0.124031764  0.126735986 -0.029509039 -0.008790282  0.211808300 -0.038330703 -0.210447146
    #$value
    #[1] 0.6255513
    #$counts
    #function gradient 
    #      53       28 
    
    glm(Y~X, family=binomial)$coefficients
    # (Intercept)           X1           X2           X3           X4           X5           X6           X7           X8           X9          X10 
    #-0.067890451 -0.102411613 -0.295104858  0.616228141  0.124017980  0.126737807 -0.029523206 -0.008790988  0.211810613 -0.038319484 -0.210445717 
    

    The figure below shows how the cost and the coefficients iteratively computed with optim converge to the ones computed with glm.

    enter image description here