Running below code tf.contrib.slim.get_variables_to_restore() return empty value [] for all_vars, and then causing failure when calling tf.train.Saver. Detail error message shows below.
Am I missing anything?
>>> import tensorflow as tf
>>> inception_exclude_scopes = ['InceptionV3/AuxLogits', 'InceptionV3/Logits', 'global_step', 'final_ops']
>>> inception_checkpoint_file = '/Users/morgan.du/git/machine-learning/projects/capstone/yelp/model/inception_v3_2016_08_28.ckpt'
>>> with tf.Session(graph=tf.Graph()) as sess:
... init_op = tf.global_variables_initializer()
... sess.run(init_op)
... reader = tf.train.NewCheckpointReader(inception_checkpoint_file)
... var_to_shape_map = reader.get_variable_to_shape_map()
... all_vars = tf.contrib.slim.get_variables_to_restore(exclude=inception_exclude_scopes)
... inception_saver = tf.train.Saver(all_vars)
... inception_saver.restore(sess, inception_checkpoint_file)
...
Traceback (most recent call last):
File "<stdin>", line 7, in <module>
File "/Users/morgan.du/miniconda2/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 1051, in __init__
self.build()
File "/Users/morgan.du/miniconda2/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 1072, in build
raise ValueError("No variables to save")
ValueError: No variables to save
The problem here seems to be that your graph is empty—i.e. it does not contain any variables. You create a new graph on the line with tf.Session(graph=tf.Graph()):
, and none of the following lines creates a tf.Variable
object.
To restore a pre-trained TensorFlow model, you need to do one of three things:
.meta
.