pythonscipycomputational-geometryspatialvoronoi

clipping a voronoi diagram python


I am computing a voronoi diagram from a set of points as follows:

from scipy.spatial import Voronoi
import numpy as np


np.random.seed(0)
points = np.random.uniform(-0.5, 0.5, (100, 2))
# Compute Voronoi
v = Voronoi(points)
voronoi_plot_2d(v)
plt.show()

This creates an image as follows:

Voronoi

As one can see, this is creating vertices which are going to infinity (dashed lines) and also beyond the original bounding box for the points which is:

 bbox = np.array([[-0.5, -0.5], [0.5, -0.5], [0.5, 0.5], [-0.5, 0.5]])

What I would like to do is clip the voronoi diagram to this bounding box i.e. project the out of bounds and infinite vertices onto the appropriate locations on this bounding box. So the vertices would need to be rearranged and projected back to the proper intersection points from infinity or the finite vertices but which are out of bounds from my clipping region.


Solution

  • It can be easyly be done with Shapely. You can install it from Conda Forge: conda install shapely -c conda-forge

    Code you need at github.gist, based on answer by @Gabriel and @pv.:

    # coding=utf-8
    import numpy as np
    import matplotlib.pyplot as plt
    from scipy.spatial import Voronoi
    from shapely.geometry import Polygon
    
    def voronoi_finite_polygons_2d(vor, radius=None):
        """
        Reconstruct infinite voronoi regions in a 2D diagram to finite
        regions.
        Parameters
        ----------
        vor : Voronoi
            Input diagram
        radius : float, optional
            Distance to 'points at infinity'.
        Returns
        -------
        regions : list of tuples
            Indices of vertices in each revised Voronoi regions.
        vertices : list of tuples
            Coordinates for revised Voronoi vertices. Same as coordinates
            of input vertices, with 'points at infinity' appended to the
            end.
        """
    
        if vor.points.shape[1] != 2:
            raise ValueError("Requires 2D input")
    
        new_regions = []
        new_vertices = vor.vertices.tolist()
    
        center = vor.points.mean(axis=0)
        if radius is None:
            radius = vor.points.ptp().max()*2
    
        # Construct a map containing all ridges for a given point
        all_ridges = {}
        for (p1, p2), (v1, v2) in zip(vor.ridge_points, vor.ridge_vertices):
            all_ridges.setdefault(p1, []).append((p2, v1, v2))
            all_ridges.setdefault(p2, []).append((p1, v1, v2))
    
        # Reconstruct infinite regions
        for p1, region in enumerate(vor.point_region):
            vertices = vor.regions[region]
    
            if all(v >= 0 for v in vertices):
                # finite region
                new_regions.append(vertices)
                continue
    
            # reconstruct a non-finite region
            ridges = all_ridges[p1]
            new_region = [v for v in vertices if v >= 0]
    
            for p2, v1, v2 in ridges:
                if v2 < 0:
                    v1, v2 = v2, v1
                if v1 >= 0:
                    # finite ridge: already in the region
                    continue
    
                # Compute the missing endpoint of an infinite ridge
    
                t = vor.points[p2] - vor.points[p1] # tangent
                t /= np.linalg.norm(t)
                n = np.array([-t[1], t[0]])  # normal
    
                midpoint = vor.points[[p1, p2]].mean(axis=0)
                direction = np.sign(np.dot(midpoint - center, n)) * n
                far_point = vor.vertices[v2] + direction * radius
    
                new_region.append(len(new_vertices))
                new_vertices.append(far_point.tolist())
    
            # sort region counterclockwise
            vs = np.asarray([new_vertices[v] for v in new_region])
            c = vs.mean(axis=0)
            angles = np.arctan2(vs[:,1] - c[1], vs[:,0] - c[0])
            new_region = np.array(new_region)[np.argsort(angles)]
    
            # finish
            new_regions.append(new_region.tolist())
    
        return new_regions, np.asarray(new_vertices)
    
    # make up data points
    np.random.seed(1234)
    points = np.random.rand(15, 2)
    
    # compute Voronoi tesselation
    vor = Voronoi(points)
    
    # plot
    regions, vertices = voronoi_finite_polygons_2d(vor)
    
    min_x = vor.min_bound[0] - 0.1
    max_x = vor.max_bound[0] + 0.1
    min_y = vor.min_bound[1] - 0.1
    max_y = vor.max_bound[1] + 0.1
    
    mins = np.tile((min_x, min_y), (vertices.shape[0], 1))
    bounded_vertices = np.max((vertices, mins), axis=0)
    maxs = np.tile((max_x, max_y), (vertices.shape[0], 1))
    bounded_vertices = np.min((bounded_vertices, maxs), axis=0)
    
    
    
    box = Polygon([[min_x, min_y], [min_x, max_y], [max_x, max_y], [max_x, min_y]])
    
    # colorize
    for region in regions:
        polygon = vertices[region]
        # Clipping polygon
        poly = Polygon(polygon)
        poly = poly.intersection(box)
        polygon = [p for p in poly.exterior.coords]
    
        plt.fill(*zip(*polygon), alpha=0.4)
    
    plt.plot(points[:, 0], points[:, 1], 'ko')
    plt.axis('equal')
    plt.xlim(vor.min_bound[0] - 0.1, vor.max_bound[0] + 0.1)
    plt.ylim(vor.min_bound[1] - 0.1, vor.max_bound[1] + 0.1)
    
    plt.savefig('voro.png')
    plt.show()