I have a dataset of 1 million labelled sentences and using it for finding sentiment through Maximum Entropy. I am using Stanford Classifier for the same:-
public class MaximumEntropy {
static ColumnDataClassifier cdc;
public static float calMaxEntropySentiment(String text) {
initializeProperties();
float sentiment = (getMaxEntropySentiment(text));
return sentiment;
}
public static void initializeProperties() {
cdc = new ColumnDataClassifier(
"\\stanford-classifier-2016-10-31\\properties.prop");
}
public static int getMaxEntropySentiment(String tweet) {
String filteredTweet = TwitterUtils.filterTweet(tweet);
System.out.println("Reading training file");
Classifier<String, String> cl = cdc.makeClassifier(cdc.readTrainingExamples(
"\\stanford-classifier-2016-10-31\\labelled_sentences.txt"));
Datum<String, String> d = cdc.makeDatumFromLine(filteredTweet);
System.out.println(filteredTweet + " ==> " + cl.classOf(d) + " " + cl.scoresOf(d));
// System.out.println("Class score is: " +
// cl.scoresOf(d).getCount(cl.classOf(d)));
if (cl.classOf(d) == "0") {
return 0;
} else {
return 4;
}
}
}
My data is labelled 0 or 1. Now for each tweet the whole dataset is being read and it is taking a lot of time considering the size of dataset. My query is that is there any way to first train the classifier and then load it when a tweet's sentiment is to be found. I think this approach will take less time. Correct me if I am wrong. The following link provides this but there is nothing for JAVA API. Saving and Loading Classifier Any help would be appreciated.
Yes; the easiest way to do this is using Java's default serialization mechanism to serialize a classifier. A useful helper here is the IOUtils
class:
IOUtils.writeObjectToFile(classifier, "/path/to/file");
To read the classifier:
Classifier<String, String> cl = IOUtils.readObjectFromFile(new File("/path/to/file");