Suppose I have two .cpp files file1.cpp
and file2.cpp
:
// file1.cpp
#include <iostream>
inline void foo()
{
std::cout << "f1\n";
}
void f1()
{
foo();
}
and
// file2.cpp
#include <iostream>
inline void foo()
{
std::cout << "f2\n";
}
void f2()
{
foo();
}
And in main.cpp
I have forward declared the f1()
and f2()
:
void f1();
void f2();
int main()
{
f1();
f2();
}
Result (doesn't depend on build, same result for debug/release builds):
f1
f1
Whoa: Compiler somehow picks only the definition from file1.cpp
and uses it also in f2()
. What is the exact explanation of this behavior?.
Note, that changing inline
to static
is a solution for this problem. Putting the inline definition inside an unnamed namespace also solves the problem and the program prints:
f1
f2
This is undefined behavior, because the two definitions of the same inline function with external linkage break C++ requirement for objects that can be defined in several places, known as One Definition Rule:
3.2 One definition rule
...
- There can be more than one definition of a class type (Clause 9), enumeration type (7.2), inline function with external linkage (7.1.2), class template (Clause 14),[...] in a program provided that each definition appears in a different translation unit, and provided the definitions satisfy the following requirements. Given such an entity named D defined in more than one translation unit, then
6.1 each definition of D shall consist of the same sequence of tokens; [...]
This is not an issue with static
functions, because one definition rule does not apply to them: C++ considers static
functions defined in different translation units to be independent of each other.