New Edit Below
I have already referenced
AVMutableComposition - Only Playing First Track (Swift)
but it is not providing the answer to what I am looking for.
I have a AVMutableComposition()
. I am trying to apply MULTIPLE AVCompositionTrack
, of a single type AVMediaTypeVideo
in this single composition. This is because I am using 2 different AVMediaTypeVideo
sources with different CGSize
's and preferredTransforms
of the AVAsset
's they come from.
So, the only way to apply their specified preferredTransforms
is to provide them in 2 different tracks. But, for whatever reason, only the first track will actually provide any video, almost as if the second track is never there.
So, I have tried
1) using AVMutableVideoCompositionLayerInstruction
's and applying an AVVideoComposition
along with an AVAssetExportSession
, which works okay, I am still working on the transforms, but is do-able. But the processing time's of the video's are WELL OVER 1 minute, which is just inapplicable in my situation.
2) Using multiple tracks, without AVAssetExportSession
and the 2nd track of the same type never appears. Now, I could put it all on 1 track, but all the videos will then be the same size and preferredTransform as the first video, which I absolutely do not want, as it stretches them on all sides.
So my question is, is it possible
1) Applying instructions to just a track WITHOUT using AVAssetExportSession
? //Preferred way BY FAR.
2) Decrease time of export? (I have tried using PresetPassthrough
but you cannot use that if you have a exporter.videoComposition
which are where my instructions are. This is the only place I know I can put instructions, not sure if I can place them somewhere else.
Here is some of my code (without the exporter as I don't need to export anything anywhere, just do stuff after the AVMutableComposition combines the items.
func merge() {
if let firstAsset = controller.firstAsset, secondAsset = self.asset {
let mixComposition = AVMutableComposition()
let firstTrack = mixComposition.addMutableTrackWithMediaType(AVMediaTypeVideo,
preferredTrackID: Int32(kCMPersistentTrackID_Invalid))
do {
//Don't need now according to not being able to edit first 14seconds.
if(CMTimeGetSeconds(startTime) == 0) {
self.startTime = CMTime(seconds: 1/600, preferredTimescale: Int32(600))
}
try firstTrack.insertTimeRange(CMTimeRangeMake(kCMTimeZero, CMTime(seconds: CMTimeGetSeconds(startTime), preferredTimescale: 600)),
ofTrack: firstAsset.tracksWithMediaType(AVMediaTypeVideo)[0],
atTime: kCMTimeZero)
} catch _ {
print("Failed to load first track")
}
//This secondTrack never appears, doesn't matter what is inside of here, like it is blank space in the video from startTime to endTime (rangeTime of secondTrack)
let secondTrack = mixComposition.addMutableTrackWithMediaType(AVMediaTypeVideo,
preferredTrackID: Int32(kCMPersistentTrackID_Invalid))
// secondTrack.preferredTransform = self.asset.preferredTransform
do {
try secondTrack.insertTimeRange(CMTimeRangeMake(kCMTimeZero, secondAsset.duration),
ofTrack: secondAsset.tracksWithMediaType(AVMediaTypeVideo)[0],
atTime: CMTime(seconds: CMTimeGetSeconds(startTime), preferredTimescale: 600))
} catch _ {
print("Failed to load second track")
}
//This part appears again, at endTime which is right after the 2nd track is suppose to end.
do {
try firstTrack.insertTimeRange(CMTimeRangeMake(CMTime(seconds: CMTimeGetSeconds(endTime), preferredTimescale: 600), firstAsset.duration-endTime),
ofTrack: firstAsset.tracksWithMediaType(AVMediaTypeVideo)[0] ,
atTime: CMTime(seconds: CMTimeGetSeconds(endTime), preferredTimescale: 600))
} catch _ {
print("failed")
}
if let loadedAudioAsset = controller.audioAsset {
let audioTrack = mixComposition.addMutableTrackWithMediaType(AVMediaTypeAudio, preferredTrackID: 0)
do {
try audioTrack.insertTimeRange(CMTimeRangeMake(kCMTimeZero, firstAsset.duration),
ofTrack: loadedAudioAsset.tracksWithMediaType(AVMediaTypeAudio)[0] ,
atTime: kCMTimeZero)
} catch _ {
print("Failed to load Audio track")
}
}
}
}
Edit
Apple states that "Indicates instructions for video composition via an NSArray of instances of classes implementing the AVVideoCompositionInstruction protocol. For the first instruction in the array, timeRange.start must be less than or equal to the earliest time for which playback or other processing will be attempted (note that this will typically be kCMTimeZero). For subsequent instructions, timeRange.start must be equal to the prior instruction's end time. The end time of the last instruction must be greater than or equal to the latest time for which playback or other processing will be attempted (note that this will often be the duration of the asset with which the instance of AVVideoComposition is associated)."
This just states that the entire composition must be layered inside instructions if you decide to use ANY instructions (this is what I am understanding). Why is this? How would I just apply instructions to say track 2 on this example without applying changing track 1 or 3 at all:
Track 1 from 0 - 10sec, Track 2 from 10 - 20sec, Track 3 from 20 - 30sec.
Any explanation on that would probably answer my question (if it is doable).
Ok, so for my exact problem, I had to apply specific transforms CGAffineTransform
in Swift to get the specific result we wanted. The current one I am posting works with any picture taken/obtained as well as video
//This method gets the orientation of the current transform. This method is used below to determine the orientation
func orientationFromTransform(_ transform: CGAffineTransform) -> (orientation: UIImageOrientation, isPortrait: Bool) {
var assetOrientation = UIImageOrientation.up
var isPortrait = false
if transform.a == 0 && transform.b == 1.0 && transform.c == -1.0 && transform.d == 0 {
assetOrientation = .right
isPortrait = true
} else if transform.a == 0 && transform.b == -1.0 && transform.c == 1.0 && transform.d == 0 {
assetOrientation = .left
isPortrait = true
} else if transform.a == 1.0 && transform.b == 0 && transform.c == 0 && transform.d == 1.0 {
assetOrientation = .up
} else if transform.a == -1.0 && transform.b == 0 && transform.c == 0 && transform.d == -1.0 {
assetOrientation = .down
}
//Returns the orientation as a variable
return (assetOrientation, isPortrait)
}
//Method that lays out the instructions for each track I am editing and does the transformation on each individual track to get it lined up properly
func videoCompositionInstructionForTrack(_ track: AVCompositionTrack, _ asset: AVAsset) -> AVMutableVideoCompositionLayerInstruction {
//This method Returns set of instructions from the initial track
//Create inital instruction
let instruction = AVMutableVideoCompositionLayerInstruction(assetTrack: track)
//This is whatever asset you are about to apply instructions to.
let assetTrack = asset.tracks(withMediaType: AVMediaTypeVideo)[0]
//Get the original transform of the asset
var transform = assetTrack.preferredTransform
//Get the orientation of the asset and determine if it is in portrait or landscape - I forget which, but either if you take a picture or get in the camera roll it is ALWAYS determined as landscape at first, I don't recall which one. This method accounts for it.
let assetInfo = orientationFromTransform(transform)
//You need a little background to understand this part.
/* MyAsset is my original video. I need to combine a lot of other segments, according to the user, into this original video. So I have to make all the other videos fit this size.
This is the width and height ratios from the original video divided by the new asset
*/
let width = MyAsset.tracks(withMediaType: AVMediaTypeVideo)[0].naturalSize.width/assetTrack.naturalSize.width
var height = MyAsset.tracks(withMediaType: AVMediaTypeVideo)[0].naturalSize.height/assetTrack.naturalSize.height
//If it is in portrait
if assetInfo.isPortrait {
//We actually change the height variable to divide by the width of the old asset instead of the height. This is because of the flip since we determined it is portrait and not landscape.
height = MyAsset.tracks(withMediaType: AVMediaTypeVideo)[0].naturalSize.height/assetTrack.naturalSize.width
//We apply the transform and scale the image appropriately.
transform = transform.scaledBy(x: height, y: height)
//We also have to move the image or video appropriately. Since we scaled it, it could be wayy off on the side, outside the bounds of the viewing.
let movement = ((1/height)*assetTrack.naturalSize.height)-assetTrack.naturalSize.height
//This lines it up dead center on the left side of the screen perfectly. Now we want to center it.
transform = transform.translatedBy(x: 0, y: movement)
//This calculates how much black there is. Cut it in half and there you go!
let totalBlackDistance = MyAsset.tracks(withMediaType: AVMediaTypeVideo)[0].naturalSize.width-transform.tx
transform = transform.translatedBy(x: 0, y: -(totalBlackDistance/2)*(1/height))
} else {
//Landscape! We don't need to change the variables, it is all defaulted that way (iOS prefers landscape items), so we scale it appropriately.
transform = transform.scaledBy(x: width, y: height)
//This is a little complicated haha. So because it is in landscape, the asset fits the height correctly, for me anyway; It was just extra long. Think of this as a ratio. I forgot exactly how I thought this through, but the end product looked like: Answer = ((Original height/current asset height)*(current asset width))/(Original width)
let scale:CGFloat = ((MyAsset.tracks(withMediaType: AVMediaTypeVideo)[0].naturalSize.height/assetTrack.naturalSize.height)*(assetTrack.naturalSize.width))/MyAsset.tracks(withMediaType: AVMediaTypeVideo)[0].naturalSize.width
transform = transform.scaledBy(x: scale, y: 1)
//The asset can be way off the screen again, so we have to move it back. This time we can have it dead center in the middle, because it wasn't backwards because it wasn't flipped because it was landscape. Again, another long complicated algorithm I derived.
let movement = ((MyAsset.tracks(withMediaType: AVMediaTypeVideo)[0].naturalSize.width-((MyAsset.tracks(withMediaType: AVMediaTypeVideo)[0].naturalSize.height/assetTrack.naturalSize.height)*(assetTrack.naturalSize.width)))/2)*(1/MyAsset.tracks(withMediaType: AVMediaTypeVideo)[0].naturalSize.height/assetTrack.naturalSize.height)
transform = transform.translatedBy(x: movement, y: 0)
}
//This creates the instruction and returns it so we can apply it to each individual track.
instruction.setTransform(transform, at: kCMTimeZero)
return instruction
}
Now that we have those methods, we can now apply the correct and appropriate transformations to our assets appropriately and get everything fitting nice and clean.
func merge() {
if let firstAsset = MyAsset, let newAsset = newAsset {
//This creates our overall composition, our new video framework
let mixComposition = AVMutableComposition()
//One by one you create tracks (could use loop, but I just had 3 cases)
let firstTrack = mixComposition.addMutableTrack(withMediaType: AVMediaTypeVideo,
preferredTrackID: Int32(kCMPersistentTrackID_Invalid))
//You have to use a try, so need a do
do {
//Inserting a timerange into a track. I already calculated my time, I call it startTime. This is where you would put your time. The preferredTimeScale doesn't have to be 600000 haha, I was playing with those numbers. It just allows precision. At is not where it begins within this individual track, but where it starts as a whole. As you notice below my At times are different You also need to give it which track
try firstTrack.insertTimeRange(CMTimeRangeMake(kCMTimeZero, CMTime(seconds: CMTimeGetSeconds(startTime), preferredTimescale: 600000)),
of: firstAsset.tracks(withMediaType: AVMediaTypeVideo)[0],
at: kCMTimeZero)
} catch _ {
print("Failed to load first track")
}
//Create the 2nd track
let secondTrack = mixComposition.addMutableTrack(withMediaType: AVMediaTypeVideo,
preferredTrackID: Int32(kCMPersistentTrackID_Invalid))
do {
//Apply the 2nd timeRange you have. Also apply the correct track you want
try secondTrack.insertTimeRange(CMTimeRangeMake(kCMTimeZero, self.endTime-self.startTime),
of: newAsset.tracks(withMediaType: AVMediaTypeVideo)[0],
at: CMTime(seconds: CMTimeGetSeconds(startTime), preferredTimescale: 600000))
secondTrack.preferredTransform = newAsset.preferredTransform
} catch _ {
print("Failed to load second track")
}
//We are not sure we are going to use the third track in my case, because they can edit to the end of the original video, causing us not to use a third track. But if we do, it is the same as the others!
var thirdTrack:AVMutableCompositionTrack!
if(self.endTime != controller.realDuration) {
thirdTrack = mixComposition.addMutableTrack(withMediaType: AVMediaTypeVideo,
preferredTrackID: Int32(kCMPersistentTrackID_Invalid))
//This part appears again, at endTime which is right after the 2nd track is suppose to end.
do {
try thirdTrack.insertTimeRange(CMTimeRangeMake(CMTime(seconds: CMTimeGetSeconds(endTime), preferredTimescale: 600000), self.controller.realDuration-endTime),
of: firstAsset.tracks(withMediaType: AVMediaTypeVideo)[0] ,
at: CMTime(seconds: CMTimeGetSeconds(endTime), preferredTimescale: 600000))
} catch _ {
print("failed")
}
}
//Same thing with audio!
if let loadedAudioAsset = controller.audioAsset {
let audioTrack = mixComposition.addMutableTrack(withMediaType: AVMediaTypeAudio, preferredTrackID: 0)
do {
try audioTrack.insertTimeRange(CMTimeRangeMake(kCMTimeZero, self.controller.realDuration),
of: loadedAudioAsset.tracks(withMediaType: AVMediaTypeAudio)[0] ,
at: kCMTimeZero)
} catch _ {
print("Failed to load Audio track")
}
}
//So, now that we have all of these tracks we need to apply those instructions! If we don't, then they could be different sizes. Say my newAsset is 720x1080 and MyAsset is 1440x900 (These are just examples haha), then it would look a tad funky and possibly not show our new asset at all.
let mainInstruction = AVMutableVideoCompositionInstruction()
//Make sure the overall time range matches that of the individual tracks, if not, it could cause errors.
mainInstruction.timeRange = CMTimeRangeMake(kCMTimeZero, self.controller.realDuration)
//For each track we made, we need an instruction. Could set loop or do individually as such.
let firstInstruction = videoCompositionInstructionForTrack(firstTrack, firstAsset)
//You know, not 100% why this is here. This is 1 thing I did not look into well enough or understand enough to describe to you.
firstInstruction.setOpacity(0.0, at: startTime)
//Next Instruction
let secondInstruction = videoCompositionInstructionForTrack(secondTrack, self.asset)
//Again, not sure we need 3rd one, but if we do.
var thirdInstruction:AVMutableVideoCompositionLayerInstruction!
if(self.endTime != self.controller.realDuration) {
secondInstruction.setOpacity(0.0, at: endTime)
thirdInstruction = videoCompositionInstructionForTrack(thirdTrack, firstAsset)
}
//Okay, now that we have all these instructions, we tie them into the main instruction we created above.
mainInstruction.layerInstructions = [firstInstruction, secondInstruction]
if(self.endTime != self.controller.realDuration) {
mainInstruction.layerInstructions += [thirdInstruction]
}
//We create a video framework now, slightly different than the one above.
let mainComposition = AVMutableVideoComposition()
//We apply these instructions to the framework
mainComposition.instructions = [mainInstruction]
//How long are our frames, you can change this as necessary
mainComposition.frameDuration = CMTimeMake(1, 30)
//This is your render size of the video. 720p, 1080p etc. You set it!
mainComposition.renderSize = firstAsset.tracks(withMediaType: AVMediaTypeVideo)[0].naturalSize
//We create an export session (you can't use PresetPassthrough because we are manipulating the transforms of the videos and the quality, so I just set it to highest)
guard let exporter = AVAssetExportSession(asset: mixComposition, presetName: AVAssetExportPresetHighestQuality) else { return }
//Provide type of file, provide the url location you want exported to (I don't have mine posted in this example).
exporter.outputFileType = AVFileTypeMPEG4
exporter.outputURL = url
//Then we tell the exporter to export the video according to our video framework, and it does the work!
exporter.videoComposition = mainComposition
//Asynchronous methods FTW!
exporter.exportAsynchronously(completionHandler: {
//Do whatever when it finishes!
})
}
}
There is a lot going on here, but it has to be done, for my example anyways! Sorry it took so long to post and let me know if you have questions.