scalaapache-flinkdata-scienceflink-streamingflinkml

Real-Time streaming prediction in Flink using scala


Flink version : 1.2.0
Scala version : 2.11.8

I want to use a DataStream to predict using a model in flink using scala. I have a DataStream[String] in flink using scala which contains json formatted data from a kafka source.I want to use this datastream to predict on a Flink-ml model which is already trained. The problem is all the flink-ml examples use DataSet api to predict. I am relatively new to flink and scala so any help in the form of a code solution would be appreciated.

Input :

{"FC196":"Dormant","FC174":"Yolo","FC195":"Lol","FC176":"4","FC198":"BANKING","FC175":"ABDULMAJEED","FC197":"2017/04/04","FC178":"1","FC177":"CBS","FC199":"INDIVIDUAL","FC179":"SYSTEM","FC190":"OK","FC192":"osName","FC191":"Completed","FC194":"125","FC193":"7","FC203":"A10SBPUB000000000004439900053570","FC205":"1","FC185":"20","FC184":"Transfer","FC187":"2","FC186":"2121","FC189":"abcdef","FC200":"","FC188":"BR01","FC202":"INDIVIDUAL","FC201":"","FC181":"7:00PM","FC180":"2007/04/01","FC183":"11000000","FC182":"INR"}

Code :

package org.apache.flink.quickstart

//imports

import java.util.Properties

import org.apache.flink.api.scala._
import org.apache.flink.ml.recommendation.ALS
import org.apache.flink.ml.regression.MultipleLinearRegression
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment

import scala.util.parsing.json.JSON

//kafka consumer imports
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer09
import org.apache.flink.streaming.util.serialization.SimpleStringSchema

//kafka json table imports
import org.apache.flink.table.examples.scala.StreamTableExample
import org.apache.flink.table.api.TableEnvironment
import org.apache.flink.streaming.connectors.kafka.Kafka09JsonTableSource
import org.apache.flink.api.java.DataSet

//JSon4s imports
import org.json4s.native.JsonMethods



// Case class
case class CC(FC196:String,FC174:String,FC195:String,FC176:String,FC198:String,FC175:String,FC197:String,FC178:String,FC177:String,FC199:String,FC179:String,FC190:String,FC192:String,FC191:String,FC194:String,FC193:String,FC203:String,FC205:String,FC185:String,FC184:String,FC187:String,FC186:String,FC189:String,FC200:String,FC188:String,FC202:String,FC201:String,FC181:String,FC180:String,FC183:String,FC182:String)


object WordCount {

  implicit val formats = org.json4s.DefaultFormats

  def main(args: Array[String]) {

    // set up the execution environment
    implicit lazy val formats = org.json4s.DefaultFormats

    // kafka properties
    val properties = new Properties()
    properties.setProperty("bootstrap.servers", "***.**.*.***:9093")
    properties.setProperty("zookeeper.connect", "***.**.*.***:2181")
    properties.setProperty("group.id","grouop")
    properties.setProperty("auto.offset.reset", "earliest")
    val env = StreamExecutionEnvironment.getExecutionEnvironment
//    val tableEnv = TableEnvironment.getTableEnvironment(env)

    val st = env
      .addSource(new FlinkKafkaConsumer09("new", new SimpleStringSchema() , properties))
      .flatMap(raw => JsonMethods.parse(raw).toOption)


    val mapped = st.map(_.extract[CC])

    mapped.print()

    env.execute()

    }
}

Solution

  • The way you can solve this is problem is to write a MapFunction which reads the model upon start of the job. The MapFunction will then store the model as part of its internal state. That way it will be automatically recovered in case of a failure:

    public static void main(String[] args) throws Exception {
            // obtain execution environment, run this example in "ingestion time"
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setStreamTimeCharacteristic(TimeCharacteristic.IngestionTime);
    
            DataStream<Value> input = ...; // read from Kafka for example
    
            DataStream<Prediction> prediction = input.map(new Predictor());
    
            prediction.print();
    
            env.execute();
        }
    
        public static class Predictor implements MapFunction<Value, Prediction>, CheckpointedFunction {
    
            private transient ListState<Model> modelState;
    
            private transient Model model;
    
            @Override
            public Prediction map(Value value) throws Exception {
                return model.predict(value);
            }
    
            @Override
            public void snapshotState(FunctionSnapshotContext context) throws Exception {
                // we don't have to do anything here because we assume the model to be constant
            }
    
            @Override
            public void initializeState(FunctionInitializationContext context) throws Exception {
                ListStateDescriptor<Model> listStateDescriptor = new ListStateDescriptor<>("model", Model.class);
    
                modelState = context.getOperatorStateStore().getUnionListState(listStateDescriptor);
    
                if (context.isRestored()) {
                    // restore the model from state
                    model = modelState.get().iterator().next();
                } else {
                    modelState.clear();
    
                    // read the model from somewhere, e.g. read from a file
                    model = ...;
    
                    // update the modelState so that it is checkpointed from now
                    modelState.add(model);
                }
            }
        }
    
        public static class Model {}
    
        public static class Value{}
    
        public static class Prediction{}
    }