rimputationr-micerobust

Cluster robust standard errors after multiple imputation using mice R package


I would like to compute cluster robust standard errors using a mids class object. This arise from multiple imputation of missing values in a column of my original data. A minimal example below.

 library(mice)
 y <- c(1,0,0,1,1,1,1,0)
 x <- c(26, 34, 55, 15, 31 ,47, 97, 12)
 z <- c(2, NA, 0, NA, 3 ,7,7, 5)
 mydata <- as.data.frame(cbind(y,x,z))


tempData <- mice(mydata,m=5,maxit=5,meth='pmm',seed=500)

class(tempData)
# [1] "mids"

modelFit <- with(tempData,lm(y ~  x + z))     
summary(modelFit) 

At this point I would like to get the cluster robust standard errors. Unfortunately miceadds::lm.cluster does not allow "mids" class objects.


Solution

  • The function lm.cluster in miceadds is intended for regular data frames. An example for an application to multiply imputed data is given in the documentation.

    Given below is a version adapted to your question. I used the first variables as a cluster indicator because your example didn't have one.

    library(mice)
    library(miceadds)
    
    id <- c(1,0,0,1,1,1,1,0)
    y <- c(26,34,55,15,31,47,97,12)
    x <- c(2,NA,0,NA,3,7,7,5)
    
    dat <- data.frame(id,y,x)
    
    imp <- mice(dat, m=5, maxit=5, method='pmm', seed=500)
    implist <- lapply(1:5, function(i) complete(imp,i))
    
    mod <- lapply( implist, function(i){
      lm.cluster( i, formula=y~x, cluster=i$id )
    })
    # extract parameters and covariance matrices
    betas <- lapply(mod, coef)
    vars <- lapply(mod, vcov)
    # pool
    summary(pool_mi( qhat=betas, u=vars ))