I want to get an earth texture on sphere. My sphere is an icosphere built with many triangles (100+) and I found it confusing to set the UV coordinates for whole sphere. I tried to use glTexGen and effects are quite close but I got my texture repeated 8 times (see image) . I cannot find a way to make it just wrap the whole object once. Here is my code where the sphere and textures are created.
glEnable(GL_TEXTURE_2D);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glBegin(GL_TRIANGLES);
for (int i = 0; i < new_sphere->NumOfTrians; i++)
{
Triangle *draw_Trian = new_sphere->Trians+i;
glVertex3f(draw_Trian->pnts[0].coords[0], draw_Trian->pnts[0].coords[1], draw_Trian->pnts[0].coords[2]);
glVertex3f(draw_Trian->pnts[1].coords[0], draw_Trian->pnts[1].coords[1], draw_Trian->pnts[1].coords[2]);
glVertex3f(draw_Trian->pnts[2].coords[0], draw_Trian->pnts[2].coords[1], draw_Trian->pnts[2].coords[2]);
}
glDisable(GL_TEXTURE_2D);
free(new_sphere->Trians);
free(new_sphere);
glEnd();
You need to define how your texture is supposed to map to your triangles. This depends on the texture you're using. There are a multitude of ways to map the surface of a sphere with a texture (since no one mapping is free of singularities). It looks like you have a cylindrical projection texture there. So we will emit cylindrical UV coordinates.
I've tried to give you some code here, but it's assuming that
pnts.coords
is an array of floatscoord[1]
) as the 'up' direction (or the height
in a cylindrical mapping)Your code would look something like this. I've defined a new function for emitting cylindrical UVs, so you can put that wherever you like.
/* Map [(-1, -1, -1), (1, 1, 1)] into [(0, 0), (1, 1)] cylindrically */
inline void uvCylinder(float* coord) {
float angle = 0.5f * atan2(coord[2], coord[0]) / 3.14159f + 0.5f;
float height = 0.5f * coord[1] + 0.5f;
glTexCoord2f(angle, height);
}
glEnable(GL_TEXTURE_2D);
glBegin(GL_TRIANGLES);
for (int i = 0; i < new_sphere->NumOfTrians; i++) {
Triangle *t = new_sphere->Trians+i;
uvCylinder(t->pnts[0].coords);
glVertex3f(t->pnts[0].coords[0], t->pnts[0].coords[1], t->pnts[0].coords[2]);
uvCylinder(t->pnts[1].coords);
glVertex3f(t->pnts[1].coords[0], t->pnts[1].coords[1], t->pnts[1].coords[2]);
uvCylinder(t->pnts[2].coords);
glVertex3f(t->pnts[2].coords[0], t->pnts[2].coords[1], t->pnts[2].coords[2]);
}
glEnd();
glDisable(GL_TEXTURE_2D);
free(new_sphere->Trians);
free(new_sphere);
Note on Projections
The reason it's confusing to build UV coordinates for the whole sphere is that there isn't one 'correct' way to do it. Mathematically-speaking, there's no such thing as a perfect 2D mapping of a sphere; hence why we have so many different types of projections. When you have a 2D image that's a texture for a spherical object, you need to know what type of projection that image was built for, so that you can emit the correct UV coordinates for that texture.