rdplyrnse

Dplyr function to compute average, n, sd and standard error


I find myself writing this bit of code all the time to produce standard errors for group means ( to then use for plotting confidence intervals).

It would be nice to write my own function to do this in one line of code, though. I have read the nse vignette in dplyr on non-standard evaluation and this blog post as well. I get it somewhat, but I'm too much of a noob to figure this out on my own. Can anyone help out?

var1<-sample(c('red', 'green'), size=10, replace=T)
var2<-rnorm(10, mean=5, sd=1)
df<-data.frame(var1, var2)
df %>% 
group_by(var1) %>% 
summarize(avg=mean(var2), n=n(), sd=sd(var2), se=sd/sqrt(n))

Solution

  • You can use the function enquo to explicitly name the variables in your function call:

    my_fun <- function(x, cat_var, num_var){
      cat_var <- enquo(cat_var)
      num_var <- enquo(num_var)
    
      x %>%
        group_by(!!cat_var) %>%
        summarize(avg = mean(!!num_var), n = n(), 
                  sd = sd(!!num_var), se = sd/sqrt(n))
    }
    

    which gives you:

    > my_fun(df, var1, var2)
    # A tibble: 2 x 5
        var1      avg     n        sd        se
      <fctr>    <dbl> <int>     <dbl>     <dbl>
    1  green 4.873617     7 0.7515280 0.2840509
    2    red 5.337151     3 0.1383129 0.0798550
    

    and that matches the ouput of your example:

    > df %>% 
    +   group_by(var1) %>% 
    +   summarize(avg=mean(var2), n=n(), sd=sd(var2), se=sd/sqrt(n))
    # A tibble: 2 x 5
        var1      avg     n        sd        se
      <fctr>    <dbl> <int>     <dbl>     <dbl>
    1  green 4.873617     7 0.7515280 0.2840509
    2    red 5.337151     3 0.1383129 0.0798550
    

    EDIT:

    The OP has asked to remove the group_by statement from the function to add the ability to group_by more than one variables. There are two ways to go about this IMO. First, you could simply remove the group_by statement and pipe a grouped data frame into the function. That method would look like this:

    my_fun <- function(x, num_var){
      num_var <- enquo(num_var)
    
      x %>%
        summarize(avg = mean(!!num_var), n = n(), 
                  sd = sd(!!num_var), se = sd/sqrt(n))
    }
    
    df %>%
      group_by(var1) %>%
      my_fun(var2)
    

    Another way to go about this is to use ... and quos to allow for the function to capture multiple arguments for the group_by statement. That would look like this:

    #first, build the new dataframe
    var1<-sample(c('red', 'green'), size=10, replace=T)
    var2<-rnorm(10, mean=5, sd=1)
    var3 <- sample(c("A", "B"), size = 10, replace = TRUE)
    df<-data.frame(var1, var2, var3)
    
    # using the first version `my_fun`, it would look like this
    df %>%
      group_by(var1, var3) %>%
      my_fun(var2)
    
    # A tibble: 4 x 6
    # Groups:   var1 [?]
        var1   var3      avg     n        sd        se
      <fctr> <fctr>    <dbl> <int>     <dbl>     <dbl>
    1  green      A 5.248095     1       NaN       NaN
    2  green      B 5.589881     2 0.7252621 0.5128378
    3    red      A 5.364265     2 0.5748759 0.4064986
    4    red      B 4.908226     5 1.1437186 0.5114865
    
    # Now doing it with a new function `my_fun2`
    my_fun2 <- function(x, num_var, ...){
      group_var <- quos(...)
      num_var <- enquo(num_var)
    
      x %>%
        group_by(!!!group_var) %>%
        summarize(avg = mean(!!num_var), n = n(), 
                  sd = sd(!!num_var), se = sd/sqrt(n))
    }
    
    df %>%
      my_fun2(var2, var1, var3)
    
    # A tibble: 4 x 6
    # Groups:   var1 [?]
        var1   var3      avg     n        sd        se
      <fctr> <fctr>    <dbl> <int>     <dbl>     <dbl>
    1  green      A 5.248095     1       NaN       NaN
    2  green      B 5.589881     2 0.7252621 0.5128378
    3    red      A 5.364265     2 0.5748759 0.4064986
    4    red      B 4.908226     5 1.1437186 0.5114865