I'm currently developing a riverplot
diagram with the riverplot package. However, I struggle to get my data ordered on the plot. Let me explain with an example:
library(riverplot)
df.nodes <- cbind.data.frame(c("A", "B", "C", "D", "E", "F", "G", "H","I","K"), c(1,1,1,1,2,2,2,2,3,3))
colnames(df.nodes) <- c("ID", "x")
df.edges <- cbind.data.frame(c("A", "B", "C", "D", "E", "F", "G", "H"), c("G", "H", "E", "F", "K", "K","I","I"), rep(1, 8))
colnames(df.edges) <- c("N1", "N2", "Value")
ex.river <- makeRiver(df.nodes, df.edges)
plot(ex.river)
As you can see, the edges in this example cross each other. This becomes very confusing when you have more nodes, than in my example. My question: do you have any creative idea how to order the nodes that I get something like this: (this is not a code, but the output order on the graph that I would like)
D F
C E K
B H I
A G
The edges should cross each other the least possible. As I understand the df.nodes
defines the order of the nodes, so I should reorder df.nodes
somehow. Of course I could order the df.nodes manually, but if you have a lots of nodes that gets tricky.
Any ideas are much appreciated.
This was a tricky one, it require a lot of join operations using data.table
. There are possibly smarter solutions. However, this one is working for the given data set.
The basic idea is to sort the nodes and edges from left to right.
df.nodes <- data.frame(ID = c("A", "B", "C", "D", "E", "F", "G", "H","I","K"),
x = c(rep(1:2, each = 4L), 3L, 3L),
stringsAsFactors = FALSE)
df.edges <- data.frame(N1 = c("A", "B", "C", "D", "E", "F", "G", "H"),
N2 = c("G", "H", "E", "F", "K", "K","I","I"),
Value = rep(1L, 8),
stringsAsFactors = FALSE)
library(data.table) # CRAN version 1.10.4 used
# coerce to data.table and use abbreviated object names
edt <- setDT(df.edges)
ndt <- setDT(df.nodes)
# add x positions of nodes to edges
# two joins required for each of the two nodes of an edge
edt2 <- ndt[ndt[edt, on = c(ID = "N2")], on = c(ID = "N1")][
, setnames(.SD, c("N1", "x1", "N2", "x2", "Value"))]
# add unique id number for edge x-positions from left to right
# id reflects order of x pos 1-2, 2-3, ..., 10-11
edt2[order(x1, x2), e.pos := rleid(x1, x2)]
edt2
# N1 x1 N2 x2 Value e.pos
#1: A 1 G 2 1 1
#2: B 1 H 2 1 1
#3: C 1 E 2 1 1
#4: D 1 F 2 1 1
#5: E 2 K 3 1 2
#6: F 2 K 3 1 2
#7: G 2 I 3 1 2
#8: H 2 I 3 1 2
# initialize: get order of nodes in leftmost x position
# update edt2 with row number
edt2 <- ndt[x == 1L, .(N1 = ID, rn1 = .I)][edt2, on = "N1"]
# loop over edge positions
# determine row numbers (sort order) for nodes from left to right
for (p in edt2[, head(unique(e.pos), -1L)]) {
edt2[p == e.pos, rn2 := rn1]
edt2 <- edt2[p == e.pos, .(N1 = N2, rn1 = rn2)][edt2, on = "N1"]
edt2[, rn1 := dplyr::coalesce(rn1, i.rn1)][, i.rn1 := NULL]
}
edt2[e.pos == last(e.pos), rn2 := rn1]
edt2
# N1 rn1 x1 N2 x2 Value e.pos rn2
#1: A 1 1 G 2 1 1 1
#2: B 2 1 H 2 1 1 2
#3: C 3 1 E 2 1 1 3
#4: D 4 1 F 2 1 1 4
#5: E 3 2 K 3 1 2 3
#6: F 4 2 K 3 1 2 4
#7: G 1 2 I 3 1 2 1
#8: H 2 2 I 3 1 2 2
# extract sort order of all nodes from edge table,
# update node table
ndt <- unique(edt2[, .(ID = c(N1, N2), rn = c(rn1, rn2))], by = "ID")[ndt, on = "ID"]
ndt
# ID rn x
# 1: A 1 1
# 2: B 2 1
# 3: C 3 1
# 4: D 4 1
# 5: E 3 2
# 6: F 4 2
# 7: G 1 2
# 8: H 2 2
# 9: I 1 3
#10: K 3 3
library(riverplot)
# pass sorted node table
# coercion back to data.frame required due to type check in `makeRiver()`
ex.river <- makeRiver(setDF(ndt[order(x, rn), .(ID, x)]), setDF(edt))
plot(ex.river)