I am trying to gauge the correlation between the historic of a stock price and an index using the Durbin Watson test in R.
This is what I have done so far:
data <- read.xlsx("data.xlsx", colNames = TRUE, detectDates = TRUE)
data
head(data)
data$X1 <- as.Date(data$X1)
bbva <- xts(data$BBVA, data$X1)
ibex <- xts(data$IBEX, data$X1)
ldbbva <- diff(log(bbva))
ldibex <- diff(log(ibex))
Here I fill some NA values.
mean <- mean(ldbbva, na.rm = TRUE)
ldbbva[is.na(ldbbva)] <- mean
mean <- mean(ldibex, na.rm = TRUE)
ldibex[is.na(ldibex)] <- mean
And I make the regression
regression <- lm(ldibex ~ ldbbva)
If we take a look at the ldibex
(for example), we can see something like this:
[,1]
2010-01-04 -0.0001060206
2010-01-05 0.0048708104
2010-01-06 0.0014819410
2010-01-07 -0.0046086970
2010-01-08 -0.0002712618
2010-01-11 -0.0073027658
But when I try to run the test dwtest(regression)
, this is the output:
Durbin-Watson test
data: regression
DW = NA, p-value = NA
alternative hypothesis: true autocorrelation is greater than 0
I already had filled all NA values, so I don't get why is this NA
.
There is a problem with using xts
object with Durbin-Watson test. Try convert your data to numeric vector:
ldbbva <- as.numeric(diff(log(bbva)))
ldibex <- as.numeric(diff(log(ibex)))
I hope it helps!