python-3.xopencvdlibscikit-image

how to get the length of eyes and mouth using dlib


I am working on a project of yawn detection, i am using dlib and opencv to detect the face and landmark on a video.

I want to get the length of eyes and mouth.

this is what i have done till now

import sys
import os
import dlib
import glob
from skimage import io
import cv2
import time

if len(sys.argv) != 3:
    print("")
    exit()

predictor_path = sys.argv[1]
faces_folder_path = sys.argv[2]

vidcap = cv2.VideoCapture('video.avi')

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(predictor_path)
win = dlib.image_window()

while vidcap.isOpened():
    success, image = vidcap.read()
    if success:
        win.clear_overlay()
        win.set_image(image)

        # Ask the detector to find the bounding boxes of each face. The 1 in the
        # second argument indicates that we should upsample the image 1 time. This
        # will make everything bigger and allow us to detect more faces.
        dets = detector(image, 1)
        print("Number of faces detected: {}".format(len(dets)))
        for k, d in enumerate(dets):
            print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
            k, d.left(), d.top(), d.right(), d.bottom()))
            # Get the landmarks/parts for the face in box d.
            shape = predictor(image, d)
            print(shape)
            print("Part 0: {}, Part 1: {},Part 2: {} ...".format(shape.part(0),shape.part(1),shape.part(2)))
            # Draw the face landmarks on the screen.
            win.add_overlay(shape)
            win.add_overlay(dets)
        time.sleep(0.01)
cv2.destroyAllWindows()
vidcap.release()

please help me how to get the length of open eyes and mouth.


Solution

  • From this figureenter image description here

    import Paths
    import globals
    from globals import ClassifierFiles
    import numpy as np
    import cv2
    import time
    import dlib
    import math
    import eyeCoordinates
    import mouthCoordinates
    from globals import Threshold
    from globals import yawnFolder
    import os
    import openface
    VIDEO_PATHS = []
    
    
    readVideo('v.avi')#test video of faces
    
    
    
    def readVideo(video):
        global no,yes
        video_capture = cv2.VideoCapture(video)
        detector = dlib.get_frontal_face_detector() #Face detector
        predictor = dlib.shape_predictor(ClassifierFiles.shapePredicter) #Landmark identifier
        face_aligner = openface.AlignDlib(ClassifierFiles.shapePredicter)
    
        u = 0
        while True:
            ret, frame = video_capture.read()
            if frame != None:
                gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                # clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
                # clahe_image = clahe.apply(gray)
    
                detections = detector(frame, 1) #Detect the faces in the image
    
                for k,d in enumerate(detections): #For each detected face
                    shape = predictor(frame, d) #Get coordinates
                    vec = np.empty([68, 2], dtype = int)
                    coor = []
                    for i in range(1,68): #There are 68 landmark points on each face
                        #cv2.circle(frame, (shape.part(i).x, shape.part(i).y), 1, (0,0,255), thickness=1)
                        coor.append([shape.part(i).x, shape.part(i).y])
                        vec[i][0] = shape.part(i).x
                        vec[i][1] = shape.part(i).y
    
                    #RightEye and LeftEye coordinates
                    rightEye = eyeCoordinates.distanceRightEye(coor)
                    leftEye = eyeCoordinates.distanceLeftEye(coor)
                    eyes = (rightEye + leftEye)/2
    
                    #Mouth coordinates
                    mouth = mouthCoordinates.distanceBetweenMouth(coor)
    
                    print(eyes,mouth)
                    #prints both eyes average distance
                    #prints mouth distance
                break
    
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
    
    
    
    if __name__ == '__main__': 
        VIDEO_PATHS = Paths.videosPaths()
        init()
    

    eyeCoordinates File

    import distanceFormulaCalculator
    
    def distanceRightEye(c):
        eR_36,eR_37,eR_38,eR_39,eR_40,eR_41 = 0,0,0,0,0,0
        eR_36 = c[35]
        eR_37 = c[36]
        eR_38 = c[37]
        eR_39 = c[38]
        eR_40 = c[39]
        eR_41 = c[40]
        x1 = distanceFormulaCalculator.distanceFormula(eR_37,eR_41)
        x2 = distanceFormulaCalculator.distanceFormula(eR_38,eR_40) 
        return ((x1+x2)/2)
    
    def distanceLeftEye(c):
        eL_42,eL_43,eL_44,eL_45,eL_46,eL_47 = 0,0,0,0,0,0
        eL_42 = c[41]
        eL_43 = c[42]
        eL_44 = c[43]
        eL_45 = c[44]
        eL_46 = c[45]
        eL_47 = c[46]
        x1 = distanceFormulaCalculator.distanceFormula(eL_43,eL_47)
        x2 = distanceFormulaCalculator.distanceFormula(eL_44,eL_46) 
        return ((x1+x2)/2)
    
    
    
    def eyePoints():
        return [36,37,38,39,40,41,42,43,44,45,46,47]
    

    Mouth Coordinates File

    import distanceFormulaCalculator
    
    def distanceBetweenMouth(c):
        m_60,m_61,m_62,m_63,m_64,m_65,m_66,m_67 = 0,0,0,0,0,0,0,0
        m_60 = c[59]
        m_61 = c[60]
        m_62 = c[61]
        m_63 = c[62]
        m_64 = c[63]
        m_65 = c[64]
        m_66 = c[65]
        m_67 = c[66]
        x1 = distanceFormulaCalculator.distanceFormula(m_61,m_67)
        x2 = distanceFormulaCalculator.distanceFormula(m_62,m_66)
        x3 = distanceFormulaCalculator.distanceFormula(m_63,m_65)   
        return ((x1+x2+x3)/3)
    
    
    
    def mouthPoints():
        return [60,61,62,63,64,65,66,67]