The 6 faces method is a very cheap and fast way to calibrate and accelerometer like my MPU6050, here a great description of the method.
I made 6 tests to calibrate the accelerometer based on the g vector.
After that I build up a matrix and in each row is stored the mean of each axis expressed in m/s^2, thanks to this question I automatically calculated the mean for each column in each file.
The tests were randomly performed, I tested all the six positions, but I didn't follow any path. So I sorted manually the final matrix, based on the sort of the Y matrix, my reference matrix. The Y elements are fixed.
The matrix manually sorted is the following
Here how I manually sorted the matrix
meanmatrix=[ax ay az];
mean1=meanmatrix(1,:);
mean2=meanmatrix(2,:);
mean3=meanmatrix(3,:);
mean4=meanmatrix(4,:);
mean5=meanmatrix(5,:);
mean6=meanmatrix(6,:);
meanmatrix= [mean1; mean3; mean2; mean4;mean6;mean5];
Based on the Y matrix constrain how can sort my matrix without knowing "a priori" which is the test stored in the row?
Assuming that the bias on the accelerometer is not huge, you can look at the rows of your matrix and see with which of the rows in your Y matrix matches.
sorted_meanmatrix = zeros(size(meanmatrix));
for rows = 1:length(Y)
% Calculates the square of distance and see which row has a nearest distcance
[~,index] = min(sum((meanmatrix - Y(rows,:)).^2, 2));
sorted_meanmatrix(rows,:) = meanmatrix(index,:);
end