I am working on a distributed algorithm and decided to use a Akka to scale it across machines. The machines need to exchange messages very frequently and these messages reference some immutable objects that exist on every machine. Hence, it seems sensible to "compress" the messages in the sense that the shared, replicated objects should not be serialized in the messages. Not only would this save on network bandwidth but it also would avoid creating duplicate objects in the receiver side whenever a message is deserialized.
Now, my question is how to do this properly. So far, I could think of two options:
Handle this on the "business layer", i.e., converting my original message objects to some reference objects that replace references to the shared, replicated objects by some symbolic references. Then, I would send those reference objects rather than the original messages. Think of it as replacing some actual web resource with a URL. Doing this seems rather straight-forward in terms of coding but it also drags serialization concerns into the actual business logic.
Write custom serializers that are aware of the shared, replicated objects. In my case, it would be okay that this solution would introduce the replicated, shared objects as global state to the actor systems via the serializers. However, the Akka documentation does not describe how to programmatically add custom serializers, which would be necessary to weave in the shared objects with the serializer. Also, I could imagine that there are a couple of reasons, why such a solution would be discouraged. So, I am asking here.
Thanks a lot!
It's possible to write your own, custom serializers and let them do all sorts of weird things, then you can bind them at the config level as usual:
class MyOwnSerializer extends Serializer {
// If you need logging here, introduce a constructor that takes an ExtendedActorSystem.
// class MyOwnSerializer(actorSystem: ExtendedActorSystem) extends Serializer
// Get a logger using:
// private val logger = Logging(actorSystem, this)
// This is whether "fromBinary" requires a "clazz" or not
def includeManifest: Boolean = true
// Pick a unique identifier for your Serializer,
// you've got a couple of billions to choose from,
// 0 - 40 is reserved by Akka itself
def identifier = 1234567
// "toBinary" serializes the given object to an Array of Bytes
def toBinary(obj: AnyRef): Array[Byte] = {
// Put the code that serializes the object here
//#...
Array[Byte]()
//#...
}
// "fromBinary" deserializes the given array,
// using the type hint (if any, see "includeManifest" above)
def fromBinary(
bytes: Array[Byte],
clazz: Option[Class[_]]): AnyRef = {
// Put your code that deserializes here
//#...
null
//#...
}
}
But this raises an important question: if your messages all references data that is shared on the machines already, why would you want to put in the message the pointer to the object (very bad! messages should be immutable, and a pointer isn't!), rather than some sort of immutable, string objectId (kinda your option 1) ? This is a much better option when it comes to preserving the immutability of the messages, and there is little change in your business logic (just put a wrapper over the shared state storage)
for more info, see the documentation