pythonmatlabscipyedt

How does the scipy distance_transform_edt function work?


https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform_edt.html

I'm having trouble understanding how the Euclidean distance transform function works in Scipy. From what I understand, it is different than the Matlab function (bwdist). As an example, for the input:

[[ 0.  0.  0.  0.  0.]
 [ 0.  1.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  1.  0.]
 [ 0.  0.  0.  0.  0.]]

The scipy.ndimage.distance_transform_edt function returns the same array:

[[ 0.  0.  0.  0.  0.]
 [ 0.  1.  0.  0.  0.]
 [ 0.  0.  0.  0.  0.]
 [ 0.  0.  0.  1.  0.]
 [ 0.  0.  0.  0.  0.]]

But the matlab function returns this:

1.4142    1.0000    1.4142    2.2361    3.1623
1.0000         0    1.0000    2.0000    2.2361
1.4142    1.0000    1.4142    1.0000    1.4142
2.2361    2.0000    1.0000         0    1.0000
3.1623    2.2361    1.4142    1.0000    1.4142

which makes more sense, as it is returning the "distance" to the nearest one.


Solution

  • It is not clear from the docstring, but distance_transform_edt computes the distance from non-zero (i.e. non-background) points to the nearest zero (i.e. background) point.

    For example:

    In [42]: x
    Out[42]: 
    array([[0, 0, 0, 0, 0, 1, 1, 1],
           [0, 1, 1, 1, 0, 1, 1, 1],
           [0, 1, 1, 1, 0, 1, 1, 1],
           [0, 0, 1, 1, 0, 0, 0, 1]])
    
    In [43]: np.set_printoptions(precision=3)  # Easier to read the result with fewer digits.
    
    In [44]: distance_transform_edt(x)
    Out[44]: 
    array([[ 0.   ,  0.   ,  0.   ,  0.   ,  0.   ,  1.   ,  2.   ,  3.   ],
           [ 0.   ,  1.   ,  1.   ,  1.   ,  0.   ,  1.   ,  2.   ,  2.236],
           [ 0.   ,  1.   ,  1.414,  1.   ,  0.   ,  1.   ,  1.   ,  1.414],
           [ 0.   ,  0.   ,  1.   ,  1.   ,  0.   ,  0.   ,  0.   ,  1.   ]])
    

    You can get the equivalent of Matlab's bwdist(a) by applying distance_transform_edt() to np.logical_not(a) (i.e. invert the foreground and background):

    In [71]: a
    Out[71]: 
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  1.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  1.,  0.],
           [ 0.,  0.,  0.,  0.,  0.]])
    
    In [72]: distance_transform_edt(np.logical_not(a))
    Out[72]: 
    array([[ 1.414,  1.   ,  1.414,  2.236,  3.162],
           [ 1.   ,  0.   ,  1.   ,  2.   ,  2.236],
           [ 1.414,  1.   ,  1.414,  1.   ,  1.414],
           [ 2.236,  2.   ,  1.   ,  0.   ,  1.   ],
           [ 3.162,  2.236,  1.414,  1.   ,  1.414]])