With a group of friend, we are trying to accomplish a computer vision task on Raspberry Pi, coding with C++ using OpenCV library.
Let me explain the task first. There is a pattern consisting of 16 seperate squares with each square being red, yellow or blue colored. We are mounting rasperry pi on a quadcopter with its camera module and gathering video feed of the pattern.
We have to detect colors of squares which was easy to accomplish with a little research on web. Tricky part is we have to detect order of the squares as well in order to save the colors in an array in an order.
So far we have accomplished filtering desired colors (red, yellow, blue) to determine squares.
example pattern to recognize and our process so far
In the second image, we know the colors and center points of each square. What we need is a way to write them in an order to a file or on screen.
And to find the order, we tried several OpenCV methods that find corners. With corner points at hand, we compared each point and determined end points so we could draw a boundingrectangle and overcome little distortions.
But since quadcopter gets the video stream, there is always a chance of high distortion. That messes up our corner theory, resulting in wrong order of colors. For example it can capture an image like this:
It is not right to find order of these squares by comparing their center points. It also won't work finding endpoints to draw a larger rectangle around them to flatten pattern. And then order...
What I ask for is algorithm suggestions. Are we totally going in the wrong direction trying to find corners? Is it possible to determine the order without taking distortion into consideration?
Thanks in advance.
Take the two centers that are the furthest apart and number them 1 and 16. Then find the two centers that are the furthest from the line 1-16, to the left (number 4) and to the right (number 13). Now you have the four corners.
Compute the affine transform that maps the coordinates of the corners 1, 4 and 13 to (0,0), (3,0) and (0,3). Apply this transform to the 16 centers and round to the nearest integers. If all goes well, you will obtain the "logical" coordinates of the squares, in range [0, 3] x [0, 3]. The mapping to the cell indexes is immediate.
Note that because of symmetry, a fourfold undeterminacy will remain, which you can probably lift by checking the color patterns.
This procedure will be very robust to deformations. If there is extreme perspective, you can even exploit the four corners to determine an homographic transform instead of affine. In your case, I doubt this will be useful. You can assess proper working by checking that all expected indexes have been assigned.