I have a function here that can make program count, wait etc with least count of 1 millisecond. But i was wondering if i can do same will lower precision. I have read other answers but they are mostly about changing to linux or sleep is guesstimate and whats more is those answers were around a decade old so maybe there might have come new function to do it.
Here's function-
void sleep(unsigned int mseconds)
{
clock_t goal = mseconds + clock();
while (goal > clock());
}
Actually, i was trying to make a function similar to secure_compare but i dont think it is wise idea to waste 1 millisecond(current least count) on just comparing two strings.
Here is function i made for the same -
bool secure_compare(string a,string b){
clock_t limit=wait + clock(); //limit of time program can take to compare
bool x = (a==b);
if(clock()>limit){ //if time taken to compare is more increase wait so it takes this new max time for other comparisons too
wait = clock()-limit;
cout<<"Error";
secure_compare(a,b);
}
while(clock()<limit); //finishing time left to make it constant time function
return x;
}
You're trying to make a comparison function time-independent. There are basically two ways to do this:
Instead of using the normal string comparison, you could implement your own comparison that compares all characters and not just up until the first mismatch, like this:
bool match = true;
size_t min_length = min(a.size(), b.size());
for (size_t i = 0; i < min_length; ++i) {
match &= (a[i] == b[i]);
}
return match;
Here, no branching (conditional operations) takes place, so every call of this method with strings of the same length should take roughly the same time. So the only side-channel information you leak is the length of the strings you compare, but that would be difficult to hide anyways, if they are of arbitrary length.
EDIT: Incorporating Passer By's comment:
If we want to reduce the size leakage, we could try to round the size up and clamp the index values.
bool match = true;
size_t min_length = min(a.size(), b.size());
size_t rounded_length = (min_length + 1023) / 1024 * 1024;
for (size_t i = 0; i < rounded_length; ++i) {
size_t clamped_i = min(i, min_length - 1);
match &= (a[clamped_i] == b[clamped_i]);
}
return match;
There might be a tiny cache timing sidechannel present (because we don't get any more cache misses if i > clamped_i
), but since a
and b
should be in the cache hierarchy anyways, I doubt the difference is usable in any way.