I've come across the following error:
AssertionError: dimension mismatch
I've trained a linear regression model using PySpark's LinearRegressionWithSGD. However when I try to make a prediction on the training set, I get "dimension mismatch" error.
Worth mentioning:
Some code:
pca_transformed = pca_model.transform(data_std)
X = pca_transformed.map(lambda x: (x[0], x[1]))
data = train_votes.zip(pca_transformed)
labeled_data = data.map(lambda x : LabeledPoint(x[0], x[1:]))
linear_regression_model = LinearRegressionWithSGD.train(labeled_data, iterations=10)
The prediction is the source of the error, and these are the variations I tried:
pred = linear_regression_model.predict(pca_transformed.collect())
pred = linear_regression_model.predict([pca_transformed.collect()])
pred = linear_regression_model.predict(X.collect())
pred = linear_regression_model.predict([X.collect()])
The regression weights:
DenseVector([1.8509, 81435.7615])
The vectors used:
pca_transformed.take(1)
[DenseVector([-0.1745, -1.8936])]
X.take(1)
[(-0.17449817243564397, -1.8935926689554488)]
labeled_data.take(1)
[LabeledPoint(22221.0, [-0.174498172436,-1.89359266896])]
This worked:
pred = linear_regression_model.predict(pca_transformed)
pca_transformed is of type RDD.
The function handles RDD's and arrays differently:
def predict(self, x):
"""
Predict the value of the dependent variable given a vector or
an RDD of vectors containing values for the independent variables.
"""
if isinstance(x, RDD):
return x.map(self.predict)
x = _convert_to_vector(x)
return self.weights.dot(x) + self.intercept
When a simple array is used, there might be a dimension mismatch issue (like the error in the question above).
As can be seen, if x is not an RDD, it's being converted to a vector. The thing is the dot product will not work unless you take x[0].
Here is the error reproduced:
j = _convert_to_vector(pca_transformed.take(1))
linear_regression_model.weights.dot(j) + linear_regression_model.intercept
This works just fine:
j = _convert_to_vector(pca_transformed.take(1))
linear_regression_model.weights.dot(j[0]) + linear_regression_model.intercept