rnumerical-integration

Integrate in R is failing when upper limit is Inf


I need to numerically approximate the variance of the logarithm of the sum of two log-normal random variables. I'd like to do this in R, here's an example:

################
## Setup data ##
################

sdX1 = 0.33
sdX2 = 0.70
muX1 = log(32765) - 0.5 * sdX1^2
muX2 = log(52650) - 0.5 * sdX2^2

####################################
## PDF for sum of 2 lognormal RVs ##
####################################

d2lnorm = function(z, muX1, muX2, sdX1, sdX2){

    #PDFs
    L1 = distr::Lnorm(meanlog = muX1, sdlog = sdX1)
    L2 = distr::Lnorm(meanlog = muX2, sdlog = sdX2)

    #Convlution integral
    L1plusL2 = distr::convpow(L1 + L2, 1)

    #Density function
    f.Z = distr::d(L1plusL2)

    #Evaluate
    return(f.Z(z))

}

############################################
## Expectation for sum of 2 lognormal RVs ##
############################################    

ex2lnorm = function(muX1, muX2, sdX1, sdX2){    

    #E(g(x)) = integral of g(x) * f(x) w.r.t x
    integrate(function(z) log(z) * d2lnorm(z, muX1 = muX1, muX2 = muX2, sdX1 = sdX1, sdX2 = sdX2), lower = 0, upper = +Inf)$value

}

##############
## Run code ##
##############

ex2lnorm(muX1, muX2, sdX1, sdX2)

However, the integral evaluates to 0. If I change the upper limit of integrate to a large number it works. However, I'm running a bunch of simulations and I can't fiddle with the upper limit to get it to work every time. Is there some other way to get this to work consistently?


Solution

  • What you could do if finding the maximum upper value that doesn't give 0:

    ex2lnorm = function(muX1, muX2, sdX1, sdX2){    
    
      f <- function(z) log(z) * d2lnorm(z, muX1 = muX1, muX2 = muX2, sdX1 = sdX1, sdX2 = sdX2)
    
      upper <- 2^10
      cond.lower <- FALSE
      repeat {
        new <- integrate(f, lower = 0, upper = upper)$value
        if (new > 0) cond.lower <- TRUE
        if (cond.lower && new == 0) break
        upper <- upper * 2
        prev <- new
      }
    
      prev
    }