I have a dataframe in which I would like to store 'raw' numpy.array
:
df['COL_ARRAY'] = df.apply(lambda r: np.array(do_something_with_r), axis=1)
but it seems that pandas
tries to 'unpack' the numpy.array.
Is there a workaround? Other than using a wrapper (see edit below)?
I tried reduce=False
with no success.
EDIT
This works, but I have to use the 'dummy' Data
class to wrap around the array, which is unsatisfactory and not very elegant.
class Data:
def __init__(self, v):
self.v = v
meas = pd.read_excel(DATA_FILE)
meas['DATA'] = meas.apply(
lambda r: Data(np.array(pd.read_csv(r['filename'])))),
axis=1
)
Use a wrapper around the numpy array i.e. pass the numpy array as list
a = np.array([5, 6, 7, 8])
df = pd.DataFrame({"a": [a]})
Output:
a 0 [5, 6, 7, 8]
Or you can use apply(np.array)
by creating the tuples i.e. if you have a dataframe
df = pd.DataFrame({'id': [1, 2, 3, 4],
'a': ['on', 'on', 'off', 'off'],
'b': ['on', 'off', 'on', 'off']})
df['new'] = df.apply(lambda r: tuple(r), axis=1).apply(np.array)
Output :
a b id new 0 on on 1 [on, on, 1] 1 on off 2 [on, off, 2] 2 off on 3 [off, on, 3] 3 off off 4 [off, off, 4]
df['new'][0]
Output :
array(['on', 'on', '1'], dtype='<U2')