According to Sipser's "Introduction to the Theory of Computation": If A is the set of all strings that machine M accepts, we say that A is the language of machine M and write L(M) = A. We say that M recognizes A ... A machine may accept several strings, but it always recognizes only one language. and also We say that M recognizes language A if A = {w| M accepts w}.
I guess the question has already been answered, but I would like to know if anyone has any thought about it, if there is anything interesting we can say about the subsets of a regular language, if we can say that the original DFA recognizes them and if there is any interesting relationship between the original DFA and the ones that recognize the smaller languages
If the language recognized by a DFA (of which there is always exactly one) is finite, then there are finitely many sublanguages of that language (indeed, if the language accepted consists of N strings, there are 2^N sublanguages).
There is no useful relationship which can be easily inferred from the sub/super language relationship w.r.t. where in the Chomsky hierarchy the language falls. That is: a sublanguage of a regular language may be undecidable, and a sublanguage of an undecidable language may be regular, with all possible variations in between.
Because of this, there is no particularly neat relationship to be worked out among DFAs of sub/super languages: not all of the sublanguages will even be regular; some sublanguages will have simpler DFAs than the DFA of the super language, and some will have more complicated DFAs than the DFA of the super language. Some will have the same DFA but a different set of accepting states.