I'm following the amb tutorial for Redex and, at the same time, building a model for typed arithmetic expressions, as found in Pierce's Types and Programming Languages.
I have defined the syntax and type system for such small language, but I'm in trouble to define its small step semantics. Before I got to the problems, let me present the definitions I've got so far.
First, I've defined the syntax of the language.
(define-language ty-exp
[E (ttrue)
(ffalse)
(zero)
(suc E)
(ppred E)
(iszero E)
(iff E E E)]
[T (nat)
(bool)])
Next, I defined the type system without problems.
(define-judgment-form ty-exp
#:mode (types I O)
#:contract (types E T)
[
----------------------"T-zero"
(types (zero) (nat))
]
[
-------------------------- "T-false"
(types (ffalse) (bool))
]
[
-------------------------- "T-true"
(types (ttrue) (bool))
]
[
(types E (nat))
-------------------------- "T-suc"
(types (suc E) (nat))
]
[
(types E (nat))
-------------------------- "T-pred"
(types (ppred E) (nat))
]
[
(types E (nat))
-------------------------- "T-iszero"
(types (iszero E) (bool))
]
[
(types E_1 (bool))
(types E_2 T_1)
(types E_3 T_1)
-------------------------- "T-iff"
(types (iff E_1 E_2 E_3) (T_1))
]
)
As far as I understand, we need to define semantics using evaluation contexts. So my next step was to define such contexts and values for the language.
(define-extended-language ty-exp-ctx-val ty-exp
(C (suc C)
(ppred C)
(iszero C)
(iff C E E)
hole)
(NV (zero)
(suc NV))
(BV (ttrue)
(ffalse))
(V (NV)
(BV)))
Non-terminal C
stands for contexts, NV
for numerical values, BV
for boolean values and V
for values. Using the definition of values, I defined a function for testing if an expression is a value.
(define v? (redex-match ty-exp-ctx-val V))
Using this setup, I tried to defined the operational semantics for this language. In Pierce's book, such semantics (without evaluation contexts) is as follows:
e --> e'
---------------- (E-suc)
suc e --> suc e'
------------------ (E-pred-zero)
pred zero --> zero
NV e
------------------- (E-pred-succ)
pred (suc e) --> e
e --> e'
------------------- (E-pred)
pred e --> pred e'
-------------------- (E-iszero-zero)
iszero zero --> true
NV e
------------------------ (E-iszero-succ)
iszero (suc e) --> false
e --> e'
-------------------------(E-iszero)
iszero e --> iszero e'
---------------------- (E-if-true)
if true e e' --> e
-----------------------(E-if-false)
if false e e' --> e'
e --> e'
-----------------------(E-if)
if e e1 e2 --> if e' e1 e2
In order to express such semantics using evaluation contexts, I removed rules
E-suc
, E-pred
, E-izero
and E-if
and defined a rule for stepping in an
expression context:
e --> e'
--------------(E-context)
E[e] --> E[e']
As far as I understand, we don't need to represent such context rule in redex. So, I have defined the semantics for this language as:
(define red
(reduction-relation
ty-exp-ctx-val
#:domain E
(--> (in-hole C (iff (ttrue) E_1 E_2))
(in-hole C E_1)
"E-if-true")
(--> (in-hole C (iff (ffalse) E_1 E_2))
(in-hole C E_2)
"E-if-false")
(--> (in-hole C (iszero (zero)))
(in-hole C (ttrue))
"E-iszero-zero")
(--> (in-hole C (iszero (suc (E))))
(in-hole C (ffalse))
(side-condition (v? (term E)))
"E-iszero-suc")
(--> (in-hole C (ppred (zero)))
(in-hole C (zero))
"E-pred-zero")
(--> (in-hole C (ppred (suc (E))))
(in-hole C (E))
(side-condition (v? (term E)))
"E-pred-suc")
))
Now, we come to the problem: When I tried to execute
(traces red (term (iif (iszero zero) ttrue ffalse)))
Racket returns the following error message:
reduction-relation: relation not defined for (iif (iszero (zero)) (ttrue) (ffalse))
Surely, I'm doing something silly, but I can't figure out what. Could someone help me with this?
After running the program, I see what the problem is.
Try:
(traces red (term (iff (iszero (zero)) (ttrue) (ffalse))))
In
(define-language ty-exp
[E (ttrue)
(ffalse)
(zero)
(suc E)
(ppred E)
(iszero E)
(iff E E E)]
[T (nat)
(bool)])
you have parentheses around ttrue
, ffalse
and zero
.