pythonpandasmelt

Pandas Melt several groups of columns into multiple target columns by name


I would like to melt several groups of columns of a dataframe into multiple target columns. Similar to questions Python Pandas Melt Groups of Initial Columns Into Multiple Target Columns and pandas dataframe reshaping/stacking of multiple value variables into seperate columns. However I need to do this explicitly by column name, rather than by index location.

import pandas as pd
df = pd.DataFrame([('a','b','c',1,2,3,'aa','bb','cc'), ('d', 'e', 'f', 4, 5, 6, 'dd', 'ee', 'ff')],
                  columns=['a_1', 'a_2', 'a_3','b_1', 'b_2', 'b_3','c_1', 'c_2', 'c_3'])
df

Original Dataframe:

    id   a_1  a_2  a_3  b_1  b_2  b_3  c_1  c_2  c_3
0   101   a    b    c    1    2    3    aa   bb   cc
1   102   d    e    f    4    5    6    dd   ee   ff

Target Dataframe

     id   a   b   c
0   101   a   1   aa
1   101   b   2   bb
2   101   c   3   cc
3   102   d   4   dd
4   102   e   5   ee
5   102   f   6   ff

Advice is much appreciated on an approach to this.


Solution

  • There is a more efficient way to do these type of problems that involve melting multiple different sets of columns. The pandas function wide_to_long is built for these exact situations.

    pd.wide_to_long(df, stubnames=['a', 'b', 'c'], i='id', j='dropme', sep='_')\
      .reset_index()\
      .drop('dropme', axis=1)\
      .sort_values('id')
    
        id  a  b   c
    0  101  a  1  aa
    2  101  b  2  bb
    4  101  c  3  cc
    1  102  d  4  dd
    3  102  e  5  ee
    5  102  f  6  ff