I know ValueError
question has been asked many times. I am still struggling to find an answer because I am using inverse_transform
in my code.
Say I have an array a
a.shape
> (100,20)
and another array b
b.shape
> (100,3)
When I did a np.concatenate
,
hat = np.concatenate((a, b), axis=1)
Now shape of hat
is
hat.shape
(100,23)
After this, I tried to do this,
inversed_hat = scaler.inverse_transform(hat)
When I do this, I am getting an error:
ValueError: operands could not be broadcast together with shapes (100,23) (25,) (100,23)
Is this broadcast error in inverse_transform
? Any suggestion will be helpful. Thanks in advance!
Although you didn't specify, I'm assuming you are using . You need to fit the data first.inverse_transform()
from scikit learn's StandardScaler
import numpy as np
from sklearn.preprocessing import MinMaxScaler
In [1]: arr_a = np.random.randn(5*3).reshape((5, 3))
In [2]: arr_b = np.random.randn(5*2).reshape((5, 2))
In [3]: arr = np.concatenate((arr_a, arr_b), axis=1)
In [4]: scaler = MinMaxScaler(feature_range=(0, 1)).fit(arr)
In [5]: scaler.inverse_transform(arr)
Out[5]:
array([[ 0.19981115, 0.34855509, -1.02999482, -1.61848816, -0.26005923],
[-0.81813499, 0.09873672, 1.53824716, -0.61643731, -0.70210801],
[-0.45077786, 0.31584348, 0.98219019, -1.51364126, 0.69791054],
[ 0.43664741, -0.16763207, -0.26148908, -2.13395823, 0.48079204],
[-0.37367434, -0.16067958, -3.20451107, -0.76465428, 1.09761543]])
In [6]: new_arr = scaler.inverse_transform(arr)
In [7]: new_arr.shape == arr.shape
Out[7]: True