pythonnumpymatplotlibmatplotlib-3d

Plotting implicit equations in 3d


I'd like to plot implicit equation F(x,y,z) = 0 in 3D. Is it possible in Matplotlib?


Solution

  • You can trick matplotlib into plotting implicit equations in 3D. Just make a one-level contour plot of the equation for each z value within the desired limits. You can repeat the process along the y and z axes as well for a more solid-looking shape.

    from mpl_toolkits.mplot3d import axes3d
    import matplotlib.pyplot as plt
    import numpy as np
    
    def plot_implicit(fn, bbox=(-2.5,2.5)):
        ''' create a plot of an implicit function
        fn  ...implicit function (plot where fn==0)
        bbox ..the x,y,and z limits of plotted interval'''
        xmin, xmax, ymin, ymax, zmin, zmax = bbox*3
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')
        A = np.linspace(xmin, xmax, 100) # resolution of the contour
        B = np.linspace(xmin, xmax, 15) # number of slices
        A1,A2 = np.meshgrid(A,A) # grid on which the contour is plotted
    
        for z in B: # plot contours in the XY plane
            X,Y = A1,A2
            Z = fn(X,Y,z)
            cset = ax.contour(X, Y, Z+z, [z], zdir='z')
            # [z] defines the only level to plot for this contour for this value of z
    
        for y in B: # plot contours in the XZ plane
            X,Z = A1,A2
            Y = fn(X,y,Z)
            cset = ax.contour(X, Y+y, Z, [y], zdir='y')
    
        for x in B: # plot contours in the YZ plane
            Y,Z = A1,A2
            X = fn(x,Y,Z)
            cset = ax.contour(X+x, Y, Z, [x], zdir='x')
    
        # must set plot limits because the contour will likely extend
        # way beyond the displayed level.  Otherwise matplotlib extends the plot limits
        # to encompass all values in the contour.
        ax.set_zlim3d(zmin,zmax)
        ax.set_xlim3d(xmin,xmax)
        ax.set_ylim3d(ymin,ymax)
    
        plt.show()
    

    Here's the plot of the Goursat Tangle:

    def goursat_tangle(x,y,z):
        a,b,c = 0.0,-5.0,11.8
        return x**4+y**4+z**4+a*(x**2+y**2+z**2)**2+b*(x**2+y**2+z**2)+c
    
    plot_implicit(goursat_tangle)
    

    alt text

    You can make it easier to visualize by adding depth cues with creative colormapping:

    alt text

    Here's how the OP's plot looks:

    def hyp_part1(x,y,z):
        return -(x**2) - (y**2) + (z**2) - 1
    
    plot_implicit(hyp_part1, bbox=(-100.,100.))
    

    alt text

    Bonus: You can use python to functionally combine these implicit functions:

    def sphere(x,y,z):
        return x**2 + y**2 + z**2 - 2.0**2
    
    def translate(fn,x,y,z):
        return lambda a,b,c: fn(x-a,y-b,z-c)
    
    def union(*fns):
        return lambda x,y,z: np.min(
            [fn(x,y,z) for fn in fns], 0)
    
    def intersect(*fns):
        return lambda x,y,z: np.max(
            [fn(x,y,z) for fn in fns], 0)
    
    def subtract(fn1, fn2):
        return intersect(fn1, lambda *args:-fn2(*args))
    
    plot_implicit(union(sphere,translate(sphere, 1.,1.,1.)), (-2.,3.))
    

    alt text