rcluster-computingveganhclustmds

How to plot an nmds with coloured/symbol points based on SIMPROF


Hi so i am trying to plot my nmds of a assemblage data which is in a bray-curtis dissimilarity matrix in R. I have been able to apply ordielipse(),ordihull() and even change the colours based on group factors created by cutree() of a hclst()

e.g using the dune data from the vegan package

data(dune)
Dune.dis <- vegdist(Dune, method = "bray)
Dune.mds <- metaMDS(Dune, distance = "bray", k=2)

#hierarchical cluster
clua <- hclust(Dune.dis, "average")
plot(clua, hang = -1)
# set groupings
rect.hclust(clua, 4)
grp <- cutree(clua, 4)

#plot mds
plot(Dune.mds, display = "sites", type = "text", cex = 1.5)

#show groupings
ordielipse(Dune.mds, group = grp, border =1, col ="red", lwd = 3)

or even colour the points just by the cutree

colvec <- c("red2", "cyan", "deeppink3", "green3")
colvec[grp]
plot(Dune.mds, display = "sites", type = "text", cex = 1.5) #or use type = "points"
points(P4.mds, col = colvec[c2], bg =colvec[c2], pch=21)

However what i really want to do is use the SIMPROF function using the package "clustsig" to then colour the points based on significant groupings - this is more of a technical coding language thing - i am sure there is a way to create a string of factors but i am sure there is a more efficient way to do it

heres my code so far for that:

simp <- simprof(Dune.dis, num.expected = 1000, num.simulated = 999, method.cluster = "average", method.distance = "braycurtis", alpha = 0.05, sample.orientation = "row")
#plot dendrogram    
simprof.plot(simp, plot = TRUE)

Now i am just not sure how do the next step to plot the nmds using the groupings defined by the SIMPROF - how do i make the SIMPROF results a factor string without literally typing it my self it myself?

Thanks in advance.


Solution

  • You wrote you know how to get colours from an hclust object with cutree. Then read the documentation of clustsig::simprof. This says that simprof returns an hclust object within its result object. It also returns numgroups which is the suggested number of clusters. Now you have all information you need to use the cutree of hclust you already know. If your simprof result is called simp, use cutree(simp$hclust, simp$numgroups) to extract the integer vector corresponding to the clustsig::simprof result, and use this to colours.

    I have never used simprof or clustsig, but I gathered all this information from its documentation.