The new pandas version deprecates the TimeGrouper
, so we should use the regular Grouper
.
The old code:
df['column_name'].groupby(pd.TimeGrouper("M")).mean().plot()
works fine in the old version of pandas. However, none of:
df.groupby(pd.Grouper(key='column_name', freq="M")).mean().plot()
df['column_name'].groupby(pd.Grouper(freq="M")).mean().plot()
works in the new version. Eiter the key is considered to be missing, or pandas complains about:
Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'Float64Index'
import pandas as pd
df = pd.DataFrame({'column_name':['2017-01-01', '2017-01-02'],
'column_value':[1,3]})
df
df.index = pd.DatetimeIndex(df.column_name)
df.index
# old version
df['column_value'].groupby(pd.TimeGrouper("M")).mean().plot()
# new version
df.groupby(pd.Grouper(key='column_value', freq="M")).mean().plot()
As I said in the comment key should be datetime in grouper. Timegrouper by default converts it to datetime so use
df['column_name'] = pd.to_datetime(df['column_name'])
# new version
df.groupby(pd.Grouper(key='column_name', freq="M")).mean().plot()